Типы памяти: Типы памяти и техники эффективного запоминания

Содержание

Типы памяти и техники эффективного запоминания

Одни люди запоминают текст сразу после прочтения, а другие неделю учат стихотворение и в итоге смогут воспроизвести лишь несколько строк. Однако это не означает, что у первых память «хорошая», а у других — «плохая». Процесс запоминания во многом зависит от особенностей восприятия, вида памяти и используемых техник, а благодаря такому свойству мозга, как нейропластичность, память можно и нужно укреплять. Т&Р рассказывают, какие типы памяти бывают и как ее развивать.

Классификация памяти

По сенсорной модальности
  • Зрительная (визуальная) память

  • Моторная (кинестетическая) память

  • Звуковая (аудиальная) память

  • Вкусовая память

  • Обонятельная память

  • Эйдетическая память — феноменальный тип запоминания. Человек способен мысленно сфотографировать любой объект и затем воспроизвести его, учитывая все подробности.

В зависимости от того, какой канал восприятия является доминирующим, можно выбирать соответствующие методики для наиболее эффективного запоминания. Но это не означает, что другие способы запоминания не подходят.

Аудиалам лучше использовать аудиокниги и лекции, а также обсуждать новую информацию в группе. Необходимо вслух проговаривать услышанное и пересказывать для более эффективного запоминания.

Для визуалов будет эффективным конспектирование. Делать это можно различными способами: составлять mind maps, концептуальные карты, рисовать объекты, выделять цветами важные фрагменты в таблицах, графиках.

Кинестетикам следует развивать моторику и писать как можно больше от руки. Также можно связывать запоминание с физическими упражнениями — сжимать маленький предмет в руке, тем самым усиливая концентрацию.

По длительности хранения

Согласно модели Ричарда Аткинсона и Ричарда Шиффрина, существует три структуры памяти:

сенсорное хранилище, или сенсорная память, содержит информацию, поступающую из сенсорной системы, хранится в течение небольшого периода

кратковременное хранилище сохраняет ограниченный объем информации на более длительное время, в нем происходят процессы, которые регулируют обмен информацией с долговременной памятью

долговременная память способна сохранить наибольший объем информации в течение продолжительного периода

В хранилище долговременной памяти чаще поступает информация, которая закрепляется человеком несколько раз различными способами.

По наличию цели запоминания

Порой мы запоминаем то, что, казалось бы, совсем не нужно, и не можем уложить в голове важное. Незначимые для нас вещи проникают в сознание благодаря работе непроизвольной памяти. Она не регулируется определенной программой и, как правило, не имеет цели. Объект не прикладывает никаких усилий для запоминания. Забывание этих данных также является произвольным выборочным процессом. Его механика до сих пор неясна.

Произвольная память подразумевает контролируемый процесс, который осуществляется благодаря постановке конкретной цели и использованию специальных техник для запоминания.

По осознанности

Эксплицитная (декларативная) память подразумевает осознанное воспоминание. Ее также называют декларативной. Она включает в себя запоминание событий, слов, лиц. В отличие от имплицитной памяти, это осознанный процесс. Актуализация конкретного урока вождения — пример эксплицитной памяти, а повышение водительского мастерства в результате урока является примером имплицитной памяти.

При использовании имплицитной памяти происходит повторение без какого-либо волевого усилия. Люди, страдающие амнезией, утрачивают именно эксплицитную память, при этом имплицитная память продолжает функционировать.

Как развивать память

Во многом развитие памяти связано с тренировкой внимания и улучшением способности концентрироваться. Эти процессы взаимосвязаны, так как чем больше человек удерживает внимание на чем-либо, тем больше он способен запомнить.

Эффективность запоминания зависит от:

  • мотивации, стремления запомнить эту информацию

  • значимости, которая напрямую связана с практичностью

  • эмоциональным восприятием

  • глубины погружения в материал

  • количества повторений

  • психофизического состояния

  • комбинирования различных техник запоминания

Упражнения для развития памяти

Таблицы Шульте

Таблицы, разработанные немецким психиатром Вальтером Шульте, содержат случайно расположенные объекты. Упражнения позволяют улучшить не только зрительную память, но и периферическое зрение, которое важно для скорочтения. Таблицы могут иметь разные размеры — начать можно с 2×2. В течение 5 минут смотрите на таблицу и далее постарайтесь воспроизвести содержимое ячеек.

Тренироваться можно на специальном сайте или же скачать мобильное приложение.

Метод Айвазовского

Этот метод художник использовал для того, чтобы быть более внимательным к окружающему миру и воспроизводить значимые детали на своих картинах. Техника проста: выберите любой пейзаж, интерьер, посмотрите на него в течение 5 минут и воспроизведите на бумаге. Постепенно уменьшайте временной промежуток.

Обратная перемотка

Ежедневно прокручивайте перед сном ваш день и вспоминайте не только последовательность событий, но и воспроизводите ощущения, которые были у вас в тот или иной момент. Постарайтесь с точностью вспомнить диалоги или же проговорить новую информацию.

Еще один способ перемотки — считать наоборот, при этом выбирать только четные или нечетные числа. Или же называть числа, которые делятся на три.

Выстраивание ассоциаций

Напишите рандомно любые слова и разделите их на три столбца. Ваша задача — запомнить их в течение минуты и далее выписать их на чистый лист. Задача заключается не в зазубривании, а в выстраивании ассоциаций и взаимосвязей между словами, которые на первый взгляд могут показаться не связанными между собой.

Запоминание в режиме многозадачности

На самом деле, человек не может выполнять одновременно несколько задач, но он способен быстро переключать внимание с одного предмета на другой. Выберите стихотворение, которое будете учить, и попросите друзей в течение двух минут задавать вам самые разные вопросы и задачи. Например, описать любимую детскую сладость или же решить пример. Эта тренировка благодаря постоянному сопротивлению позволит усилить ваше внимание, направленное на заучивание стихотворения. В первый раз может не получиться, однако со временем вы будете запоминать все больше и больше.

Смена привычного пути

Измените привычный маршрут и попробуйте пойти новой дорогой. Далее вспомните все, что встретилось вам на пути, в том числе лица людей, лавочки, фонари и так далее.

Описание различных типов ОЗУ

Оперативная память (ОЗУ) бывает различных типов. Различия обусловлены функцией, а также технологией памяти и другого компьютерного оборудования. 

Чтобы определить правильный тип памяти для вашего компьютера, используйте инструмент Crucial® Advisor™ или системный сканер. Этот инструмент выполняет проверку компьютера и определяет совместимую память, предлагая несколько вариантов скорости и цены на выбор. Подробнее о доступных вариантах можно узнать далее в этой статье.

SRAM, DRAM и ECC

Статическая память с произвольным доступом (SRAM) и динамическая память с произвольным доступом (DRAM) — это две классификации памяти. В SRAM данные хранятся, используя состояние ячейки памяти из шести транзисторов. SRAM часто используется в качестве кэш-памяти для процессора (ЦП). SRAM, как правило, не подлежит самостоятельной замене пользователем.

DRAM хранит данные, используя один транзистор и пару конденсаторов, которые составляют одну ячейку DRAM. DRAM дешевле в производстве, но немного медленнее, чем SRAM. Большинство модулей памяти, заменяемых пользователем, относятся к типу DRAM.

Память с коррекцией ошибок (ECC) — это разновидность DRAM, которая имеет дополнительную ячейку для обнаружения и коррекции случайных ошибок. ECC-память может быть заменена пользователем, но она должна быть совместима с другим компьютерным оборудованием. Подробнее о памяти ECC можно прочитать здесь.

Скорость передачи данных — описание DDR

Память SDRAM (синхронное динамическое запоминающее устройство с произвольной выборкой) была разработана в ответ на увеличение скорости других компьютерных компонентов. Раньше память была асинхронной, то есть она работала независимо от процессора. Синхронная память синхронизирует отклики модуля памяти с системной шиной. 

По мере роста скорости других компонентов компьютера потребовалось увеличить и скорость памяти. С этой целью была разработана технология удвоенной скорости передачи данных или DDR (Double data rate), а существовавшая до этого технология получила название одинарной скорости передачи данных или SDR (single data rate). DDR была быстрее и использовала меньше энергии, чем SDR.

Технология памяти продолжает развиваться. Следующее поколение памяти, DDR2, быстрее и потребляет меньше энергии, чем исходная DDR. DDR3 и DDR4 продолжили эту тенденцию. Каждое последующее поколение быстрее и потребляет меньше энергии.

Память должна быть совместима с другими компонентами компьютерной системы. Как правило, компоненты создаются по самым высоким стандартам на момент изготовления, но с учетом того, что технология будет развиваться далее. Чтобы исключить возможность использования пользователями несовместимой памяти, модули для каждого поколения технологии памяти физически отличаются. Эти физические различия являются стандартными для всех производителей памяти.

Скорость ОЗУ

Цифры, которые идут после «DDR» и индекса поколения, обозначают скорость передачи данных в секунду для данного модуля. Поскольку память с удвоенной скоростью передачи передает данные как по заднему, так и по переднему фронту сигнала, DDR3-800 измеряется, используя цикл продолжительностью 400 тактов при буфере ввода/вывода с частотой 1066 МГц. Обратите внимание, что Герц — это единица измерения количества циклов в секунду, а не скорости циклов.

Существует также стандартное отраслевое название, которое отображает теоретическую пропускную способность модуля, например «PC3-6400». Для расчета пропускной способности необходимо количество передач в секунду умножить на восемь (DDR3 передает данные по шине шириной 64 бит, а так как в байте восемь бит, пропускная способность составляет восемь байт данных на передачу).

Во всех случаях большее число указывает на большую скорость.

Вывод

Если вам необходимо модернизировать память компьютера или собрать собственный компьютер, следует убедиться, что память совместима с другими компонентами компьютера. Следует выбрать правильную технологию памяти, прежде чем обращать внимание на быстродействие или любые другие функции. Узнайте о том, как установить больше памяти на компьютер.

Новые и перспективные типы памяти

В мире цифровых технологий существует несколько видов памяти, используемых в системах хранения данных (компьютерах, серверах и других устройства). Самые распространенные среди них: SSD-память (NAND и NOR), оперативная память DRAM и SRAM. Реже используется HDD-память, которая постепенно отходит от использования в компьютерных устройствах, но все еще остается актуальной для некоторых систем хранения данных.

Ученые уверены, что распространенные виды памяти приближаются к пределам своего технологического развития. И вскоре их функциональность и запас емкости станут ограниченными. Уже постепенно на смену им приходят перспективные типы памяти, о которых многие и вовсе ничего не слышали.

Голографическая память

Голографическая память вскоре может стать альтернативой флэш-накопителям. Фотохромные пленки из двуокиси титана и серебряных наночастиц могут содержать в себе кратно больше информации, нежели какой-либо из текущих распространенных носителей. Запись на специальные пленки осуществляется при помощи лазерного луча с разной длиной волны, что позволяет параллельно записывать несколько голограмм с данными. Однако пока что подобная технология не рациональна из-за того, что информация повреждается с голограмм под воздействием ультрафиолета.

Молекулярная память

Молекулярная память основана на принципе сохранения данных с применением молекул протеина. Для записи данных требуется специальные оптический прибор — световой модулятор, который генерирует лазерные лучи, проникающие в молекулу через специальный полиакридный гель. Подобный элемент способен хранить 4096х4096 ячеек данных, но пока что такой новый тип памяти слишком сложный в массовом производстве. Он пока что проходит многочисленные исследования. 

Память на графеновых квантовых точках

Еще в 2014 году был создан первый прототип флэш-накопителя на графеновых квантовых точках. Тогда исследователи использовали несколько наночастиц квантовых точек, которые поместили между двуокиси кремния. Полученная энергонезависимая память на графеновых квантовых точках имеет хорошие перспективы дальнейшего массового производства и коммерческого применения. 

MRAM

Магниторезистивная память начала разрабатываться еще в 90-х годах. Ранее предполагалось, что она заменит привычную оперативную память и войдет в стандарт для всех типов устройств. Конструкция MRAM представляет собой два магнитных элемента памяти с прослойкой в виде изолята. За счет изменения состояния магнитного поля и осуществляется хранение, записывание и чтение данных. Однако пока что подобный тип памяти слишком дорогой в производстве, а также недостаточно эффективный.

STT-MRAM

Магниторезистивная память с переносом момента спина является более современным вариантом исполнения памяти MRAM, которая описана выше. Формально, технология записи и считывания у этой более инновационной технологии не отличается от MRAM. Однако за счет использования наведенных спинами токов удается достичь большей экономии энергии и приблизить технологию к показателям DRAM и SRAM.

Память с изменяемым фазовым состоянием PCM

Данная технология известна еще с 60-х годов, когда были исследованы возможности халькогенидной пленки. Этот материал активно применяется при покрытии оптических дисков. Однако в производстве дисков используются электрические свойства материала, а в памяти с изменяемым фазовым состоянием PCM — оптические. Это позволило создать элемент с изменяемым фазовым состоянием, большей вместимостью и производительностью. Но пока что данная технология считается слишком сложной в производстве.

Ферроэлектрическая память FRAM

Данный тип памяти подразумевает применение ферроэлектрической ячейки. По быстродействию она напоминает стандартную и привычную нам оперативную DRAM. Каждая ячейка памяти во FRAM состоит из n-p-n транзистора и конденсатора. А непосредственным хранителем битов информации являются свойства поляризации ферроэлектрической субстанции. 

Эта технология сегодня применяется более широко, чем ее аналоги. Разработчиком такого типа RAM является компания Ramtron International. 

Халькогенидная память PCRAM

Этот тип памяти подразумевает возможность нахождения хранителя информации в двух состояниях: аморфном и кристаллическом. Так называемая “совершенная” память имеет низкую себестоимость. А за счет трехмерной структуры удается достичь ее высокой плотности, разместив больше ячеек на чипе. 

Рабочие прототипы PCRAM были разработаны еще в 2008 году, и по сей день продолжаются исследования компаниями IBM, Infineon, Samsung, Macronix. Вероятно, вскоре будет запущен массовый процесс производства чипов данного типа для хранения данных. 

Резистивная память ReRAM

Возможно, в скором времени резистивная память сможет заменить нынешнее поколение HDD или SSD-накопителей. Основой такой памяти является элемент под названием мемристор, у которого не изменяется величина электрического сопротивления даже после приложения тока. Внутри элемента образуется мостик из ионов металла, который и выступает передатчиком. Подобной технологией сегодня занимается несколько компаний, включая Panasonic, Fujitsu, известный западный стартап Crossbar, а также HP, Western Digital и 4DS. 

Оперативная память на нанотрубках

Есть еще одна технология, которая применяется в сфере производства элементов хранения данных. Речь идет о карбоновых нанотрубках. На данный момент подобное решение больше подходит для использования в качестве оперативной памяти. За основу системы взят не принцип изменения физических и химических свойств металлов, а наномеханические принципы. Однако других подробностей об этой технологии нет и пока что она не перешла из стадии исследований к массовому производству.

SCM-память

Энергонезависимая память типа Storage Class Memory сегодня применяется достаточно широко, пройдя этап тестов и исследований к массовому производству. Хранилища этого типа подключаются к материнской плате компьютерных или серверных устройств при помощи PCIe-шины. Это значительно снижает скорость передачи данных и ускоряет обмен данными. 

Основными разработчиками этой технологии стали инженеры компаний Intel и Micron. И специалистам действительно удалось добиться увеличения производительности, сократив время отклика практически в два раза. 

Уже сейчас хранилища типа SCM применяются в сферах, где требуется моментальная обработка данных: биржевой трейдинг, облачные сервисы совместной работы, системы бронирования, приложения с Big Data и подобное.

QLC-память

Название QLC означает “четыре ячейки”. Это один из типов оптимизированной флэш-памяти NAND, которая имеет повышенную производительность за счет хранения четырех битов в каждой ячейке. Однако за счет повышения количества битов возрастает и сложность работы системы. Из-за этого надежность накопителей этого типа пока что недостаточно высота. И накопители имеют запас прочности всего около 1000 циклов записи и стирания против 100 000 таких циклов у флэш-накопителей.

Цифровые технологии с каждым годом развиваются и сложно предсказать, в каком направлении произойдет скорый прорыв. Однако можно быть уверенным, что революция в типах памяти действительно скоро произойдет. 

Поддерживаемый тип памяти для процессоров Intel® Core™ в…

Семейство процессоров Intel® Core™ для ноутбуковПоддерживаемый тип памяти

Макс. размер памяти

(зависит от типа памяти)

Процессоры Intel® Core™ i7 11-го поколения для мобильных ПК

DDR4-3200,

LPDDR4x-4267

32 ГБ, 64 ГБ
Процессоры Intel® Core™ i5 11-го поколения для мобильных ПК

DDR4-3200,

LPDDR4x-4267

32 ГБ, 64 ГБ
Процессоры Intel® Core™ i3 11-го поколения для мобильных ПК

DDR4-3200,

LPDDR4x-4267

32 ГБ, 64 ГБ
Процессоры Intel® Core™ i9 10-го поколения для ноутбуковDDR4-2933128 ГБ
Процессоры Intel® Core™ i7 10-го поколения для ноутбуков

DDR3L-1600 ,

LPDDR3-2133,

DDR4-2666, 

DDR4-2933,

DDR4-3200,

LPDDR4-3733

16 ГБ, 32 ГБ, 64 ГБ, 128 ГБ
Процессоры Intel® Core™ i5 10-го поколения для ноутбуков

DDR3L-1600 ,

LPDDR3-2133,

DDR4-2666, 

DDR4-2933,

DDR4-3200,

LPDDR4-3733

16 ГБ, 32 ГБ, 64 ГБ, 128 ГБ
Процессоры Intel® Core™ i3 10-го поколения для ноутбуков

DDR3L-1600,

DDR4-2666, 

DDR4-3200,

LPDDR4-3733

16 ГБ, 32 ГБ, 64 ГБ
Процессоры Intel® Core™ i9 9-го поколения для ноутбуков

LPDDR3-2133,

DDR4-2666

128 ГБ
Процессоры Intel® Core™ i7 9-го поколения для ноутбуков

LPDDR3-2133,

DDR4-2666

128 ГБ
Процессоры Intel® Core™ i5 9-го поколения для ноутбуков

LPDDR3-2133,

DDR4-2666

128 ГБ

Процессоры Intel® Core™ i9 8-го поколения для ноутбуков

LPDDR3-2133,

DDR4-2666

64 ГБ
Процессор Intel® Core™ i7 8-го поколения для мобильных ПК

DDR3L-1600,

LPDDR3-2133,

LPDDR3-1866,

DDR4-2666,

DDR4-2400

 

 

16 ГБ, 32 ГБ, 64 ГБ

Процессоры Intel® Core™ i5 8-го поколения для ноутбуков

DDR3L-1600,

LPDDR3-2133,

LPDDR3-1866,

DDR4-2666,

DDR4-2400

 

16 ГБ, 32 ГБ, 64 ГБ
Процессоры Intel® Core™ i3 8-го поколения для ноутбуков

LPDDR3-2133,

DDR4-2666,

DDR4-2400

32 ГБ, 64 ГБ
Процессоры Intel® Core™ i7 7-го поколения для ноутбуков

DDR3L-1600,

LPDDR3-2133, 

LPDDR3-1866,

DDR4-2133, 

DDR4-2400

16 ГБ, 32 ГБ, 64 ГБ
Процессоры Intel® Core™ i5 7-го поколения для ноутбуков

DDR3L-1600,

LPDDR3-2133, 

LPDDR3-1866,

DDR4-2133, 

DDR4-2400

16 ГБ, 32 ГБ, 64 ГБ

Процессоры Intel® Core™ i3 7-го поколения для ноутбуков

DDR3L-1600,

LPDDR3-1866,

DDR4-2133

32 ГБ, 64 ГБ
Процессоры Intel® Core™ m 8-го поколения для ноутбуков

DDR3L-1600,

LPDDR3-1866

16 ГБ

Процессоры Intel® Core™ m 7-го поколения для ноутбуков

DDR3L-1600,

LPDDR3-1866

16 ГБ

Процессоры Intel® Core™ m 6-го поколения для ноутбуков

DDR3L-1600,

LPDDR3-1866

16 ГБ

Процессоры Intel® Core™ i7 6-го поколения для ноутбуков

 

DDR3L-1600,

LPDDR3-1866,

DDR4-2133

32 ГБ, 64 ГБ
Процессоры Intel® Core™ i5 6-го поколения для ноутбуков

DDR3L-1600,

LPDDR3-1866,

DDR4-2133

32 ГБ, 64 ГБ
Процессоры Intel® Core™ i3 6-го поколения для ноутбуков

DDR3L-1600,

LPDDR3-1866,

DDR4-2133

32 ГБ, 64 ГБ
Процессоры Intel® Core™ m 5-го поколения для ноутбуков

DDR3L-1600,

DDR3L-1333,

DDR3-1333,

DDR3-1600,

LPDDR3-1600,

LPDDR3-1333,

DDR3L-RS-1600

16 ГБ
Процессоры Intel® Core™ i7 5-го поколения для ноутбуков

DDR3L-1333,

DDR3L-1866, 

DDR3L-1600,

LPDDR3-1333,

LPDDR3-1866, 

LPDDR3-1600

16 ГБ, 32 ГБ

Процессоры Intel® Core™ i5 5-го поколения для ноутбуков

DDR3L-1600,

DDR3L-1866,

DDR3L-1333,

LPDDR3-1600,

LPDDR3-1866,

LPDDR3-1333

16 ГБ, 32 ГБ

Процессоры Intel® Core™ i3 5-го поколения для ноутбуков

DDR3L-1600,

DDR3L-1333,

LPDDR3-1600,

LPDDR3-1333

16 ГБ
Процессоры Intel® Core™ i7 4-го поколения для ноутбуков

DDR3L 1333,

DDR3L-1600

32 ГБ
Процессоры Intel® Core™ i5 4-го поколения для ноутбуков

DDR3L-1333,

DDR3L-1600,

LPDDR3-1333,

LPDDR3-1600

16 ГБ, 32 ГБ

Процессоры Intel® Core™ i3 4-го поколения для ноутбуков

DDR3L-1333,

DDR3L-1600,

LPDDR3-1333,

LPDDR3-1600

16 ГБ, 32 ГБ

Процессоры Intel® Core™ i7 3-го поколения 

Процессоры Intel® Core™ i5 3-го поколения

Процессоры Intel® Core™ i3 3-го поколения

DDR3L-1333,

DDR3L-1600,

DDR3L-RS-1600,

DDR3L-RS-1333

32 ГБ

Процессоры Intel® Core™ i5 2-го поколения

Процессоры Intel® Core™ i3 2-го поколения

DDR3-1066,

DDR3-1333,

DDR3-1600

8 ГБ, 16 ГБ, 32 ГБ

Обзор новых типов памяти для серверов и систем хранения данных

Классификация типов памяти для вычислений

Память для серверов и систем хранения по функциональному устройству можно разделить на два основных вида: внутреннюю (первичную) и внешнюю (вторичную).

Классификация памяти компьютера

  • К первичной памяти относится память, располагающаяся непосредственно на главной плате или навесных платах (картах) внутри устройства.
  • Ко вторичной памяти относятся различного вида внешние накопители: накопители на жестких дисках HDD (Hard Disk Drive), твердотельные накопители SSD (Solid State Drive). Они также расположены внутри системного блока, но выполняют роль внешних носителей информации. А также ко вторичной памяти можно отнести различного рода накопители, подключаемые к компьютеру через разъем, и конструктивно с ним раздельные: компакт-диски (магнитные и оптические), которые в последнее время практически вытеснены USB-флешками. SSD-память также называют часто флэш-памятью (flash).

Вторичная память относится скорее не к памяти, а к системам хранения данных (storage) СХД. СХД с памятью соотносятся примерно так же, как книжный шкаф с рабочим столом, на котором мы держим книги (данные) и с ними работаем (не перевелись еще, слава Богу, любители читать бумажные книги), а закончив работу, убираем их обратно в шкаф.

Часто под словом «память» подразумевают только первичную оперативную память, выполненную на полупроводниковых микросхемах. Она подразделяется на два основных вида: нестираемую (non-volatile) и стираемую (volatile).

  • Постоянное запоминающее устройство ПЗУ, нестираемая память или ROM (Read-Only Memory). Она выполняет роль хранилища программ, которые записываются на более-менее длительный период и, в общем, перезаписи не подлежат. Они могут сохранять информацию длительное время, практически на весь срок службы компьютера. Это может быть, например, BIOS (Basic Input/Output System), в которой хранится небольшая программа по запуску основных систем сервера при его включении. Сейчас микросхемы ПЗУ можно «перепрошивать», но подобные операции производятся, нечасто, и выполняются, как правило, квалифицированным персоналом.
  • Оперативное запоминающее устройство ОЗУ, стираемая память, RAM (Random Access Memory). Это быстродействующая память, в которую загружаются рабочие программы из внешних накопителей для исполнения процессором. ОЗУ работает очень быстро, операции чтения-записи не требуют много энергии, но и информация в ней пропадает после отключения питания, и кроме того, ее приходится постоянно обновлять, примерно 100 раз в секунду.

RAM бывают двух основных видов: статические (SRAM) и динамические (DRAM). В серверах сейчас для оперативной памяти используется DRAM различных типов, а SRAM используется для кэширования данных процессора.

Память класса СХД

Правда в последнее время эта стройная иерархия стала немного нарушаться под воздействием процессов разработки новых типов памяти, что привело к постепенному сближению SSD и RAM. Быстродействие SSD повышается и приближается к DRAM, энергопотребление SSD снижается и также приближается к DRAM. Это привело к созданию нового класса памяти: SCM (Storage Class Memory), что можно перевести как «память класса СХД». Хотя можно и наоборот: «СХД-класс памяти».

SCM (Storage Class Memory), «память класса СХД»

Такая память занимает промежуточное место между RAM и внешними накопителями SSD/HDD.

Первичная память

Первичная (внутренняя) память подразделяется на два вида: статическую SRAM (Static Random Access Memory) и динамическую DRAM (Dynamic Random Access Memory).

Иногда к первичной памяти относят и SSD (Flash), поскольку как отмечалось выше, она стала выполнять обязанности первичной. Однако эти виды памяти имеют комплиментарные.

характеристики. Поэтому DRAM используется для оперативной памяти сервера, а SSD в большинстве случаев используется для кэширования в системах хранения данных.

Каждая из этих технологически близких видов памяти имеет свои недостатки.

Flash-память обычно создается на полевых МОП-транзисторах (металл-окисел-полупроводник) или MOSFET (metal-oxide-semiconductor field-effect transistor). Они имеют т. н. плавающий затвор FG (floating gate), в котором на достаточно долгое время сохраняется заряд, количество которого определяет бит информации. Этот затвор изолируется от истока (source) и стока (drain) транзистора слоями окисла металла.

Структура полевых МОП-транзисторов

Запись и стирание информации в такой структуре требует приложения высокого напряжения к затвору (до 20 В). Процесс изменения заряда в затворе относительно медленный и связан с возникновением ошибок при передаче через диэлектрик (окисел). Именно этим вызвано ограничение на количество циклов перезаписи в SSD, что является их недостатком перед HDD, где количество циклов перезаписи магнитного диполя практически не ограничено. С другой стороны, чтобы прочитать информацию, высокое напряжение не требуется, нужно только проверить состояние проводимости диффузного канала. Такой метод называется неразрушающим считыванием (non-destructive read), поскольку на заряд в затворе он практически не влияет.

По сравнению с SSD все виды битовых операций в DRAM производятся сравнительно быстро, поэтому такая память используется для загрузки рабочих приложений в сервере и во время работы процессор обращается именно к этой памяти. Однако при считывании данные из ячейки памяти DRAM исчезают. Более того, конденсаторы, хранящие заряд «бита» в ячейках DRAM, быстро разряжаются, и поэтому данные в DRAM нужно «обновлять» примерно 100 раз в секунду, посылая в ячейки «освежающие» импульсы.

SRAM – это наиболее быстрая память, имеющая лучшую сохранность данных, по сравнению с DRAM, однако, в каждой ее ячейке используется шесть транзисторов (в DRAM – один транзистор и один конденсатор). То есть SRAM занимает много места на чипе и по возможному объему она значительно проигрывает DRAM.

Поэтому все время разрабатываются и выпускаются различные вариации технологий памяти: память с ловушкой заряда CTM (Charge trap memory), память с изменением фазового состояния PCM (Phase-change memory) или PRAM, сегнетоэлектрическая память FRAM или FeRAM (ferroelectric RAM), резистивная память RRAM (resistive RAM), память с проводниковым проходом CBRAM (conductive bridge RAM), магниторезистивная память MRAM (magnetoresistive RAM), память с переносом момента спина электрона STT RAM (Spin-transfer torque RAM) и другие. Все эти виды активно разрабатываются и исследуются в ведущих мировых университетах и научных центрах, поскольку создание оптимального варианта памяти, сочетающего в себе достоинства как DRAM, так и SSD, для компьютерной отрасли очень актуально.

Позиционирование различных видов внутренней памяти по характеристикам

Разрыв между RAM и SSD

Между стираемой (volatile) памятью RAM и нестираемой (non-volatile) SSD Flash существует ощутимый разрыв по трем параметрам:

  • выносливость, максимально допустимое число циклов стирания-записи в ячейку;
  • время доступа, время считывания данных из ячейки;
  • площадь, занимаемая ячейкой на чипе микросхемы памяти.

RAM опережает флэш-память по всем этим параметрам на несколько порядков: выдерживает практически неограниченное число циклов перезаписи (особенно SRAM), информация из ячеек RAM считывается гораздо быстрее, чем Flash (хотя и она значительно быстрее, чем жесткие диски HDD), а также занимает немного места на чипе микросхемы.

Разрыв параметров между RAM и SSD флэш

Поэтому многие исследователи и разработчики поставили себе задачу создать память, которая бы заполняла этот разрыв и сочетала в себе все достоинства как RAM, так и SSD:

  • выносливость, то есть число циклов перезаписи достаточно высокое, чтобы использовать эту память в серверах дата-центров, где информация может перезаписываться на всем чипе по нескольку десятков и сотен раз за день;
  • небольшое время доступа при неразрушающем считывании;
  • небольшое напряжение импульса записи данных, то есть низкие энергозатраты;
  • сохранность информации при считывании, то есть принадлежность к классу non-volatile;
  • длительный период хранения информации, не короче, чем у SSD;
  • высокая плотность размещения ячеек на чипе.

В 2018 году такую память удалось разработать.

Нестираемая память с низковольтным питанием и управлением с ячейкой на основе сохранения заряда

Судя по названию раздела, это память SSD. Однако по своим характеристикам память, разработанная совместными усилиями ученых из Университета Ланкастера, Великобритания, и Университета Кадиза, Испания, приближается к DRAM, то есть заполняет «разрыв» между стираемой и нестираемой памятью.

Структура такой памяти представляет собой чередование зон изоляции (мышьяка арсенида индия InAs) и зон полупроводимости (антимонида алюминия AlSb), которые формируются на подложке антимонида галлия (GaSb). Эти зоны формируют резонансный барьер с туннельным эффектом.

Ячейка памяти с резонансно туннельным барьером

На рисунке 6 (a) показана обобщенная структура ячейки памяти, напоминающая разновидность полевого КМОП-транзистора с управляющим и плавающими затворами.

На рис. 6 (b) показана структура слоев эпитаксии с указанием толщины и выполняемой функции слоев.

На рис. 6 (с) показано фото электронного микроскопа, на котором видны относительные толщины слоев. Три полоски сверху – это многослойная структура резонансно-туннельного барьера, определяющего уникальные свойства такой ячейки памяти.

Как и в памяти SSD-флэш, заряд сохраняется в плавающем затворе FG. Однако изолирующих слоев из окислов металлов, как в МОП-транзисторе, здесь нет. Вместо этого используется т. н. 6.1-ангстремовое семейство (6.1 Å family): InAs, GaSb и AlSb, покрывающее большой диапазон энергетических уровней разрыва и других свойств полупроводников. Поэтому полупроводниковая структура больше напоминает транзистор с мобильными электронами на высоких энергетических уровнях HEMT (high-electron mobility transistor), чем классический МОП-транзистор (MOSFET).

Канал проводимости формируется из арсенида индия, который не содержит легирующих добавок ни для «дырок», ни для дополнительных электронов на высоких орбитах. Однак, канал проводимости антимонида галлия GaSb легирован примесями n-типа для небольшого избытка свободных электронов. Проводимость канала InAs определяется электронами в нем, которые имеют более высокую мобильность и плотность (вследствие легирования), чем «дырки» в подложке GaSb.

Внутренний слой плавающего затвора FG InAs изолирован от канала InAs барьером антимонида алюминия AlSb толщиной 15 нм. Квантовые ямы (quantum wells, QW) с тремя барьерами AlSb дают эффект резонансного туннелирования между плавающим затвором FG и управляющим затвором SG, выполненным из легированного электронами InAs. Поэтому электроны в плавающем затворе FG изолированы несколькими слоями AlSb и могут хранить заряд при комнатной температуре в течение 1014 лет.

Это дает возможность преодолеть наибольший недостаток SSD перед DRAM – ограниченное число циклов перезаписи ячеек, поскольку заряд в плавающем затворе изолирован очень надежно, и для его изменения не требуется большое напряжение, поскольку изменение заряда происходит за счет резонансного туннелирования.

Кроме свойства сохранения заряда (non-volatility) такая ячейка не требует много энергии для переключения состояния между 0 и 1. По результатам измерений эта энергия примерно в 60 раз меньше, чем для обычных модулей флэш-памяти. И по данному показателю эта память также приближается к DRAM. При размерах плавающего затвора 10×10 мкм для переключения состояния требуется энергии примерно 2×10−12 Дж. Если размеры ячейки уменьшить до размеров 20 нм, что меньше, чем DRAM в 100 раз, потребуется энергия всего лишь 10−17 Дж. Это меньше, чем даже у SRAM.

Однако очевидным недостатком такого типа памяти является сложность высокопрецизионного производства, что скажется на стоимости.

Технология 3D XPoint для SCM

Несколько лет назад компании Intel и Micron решили объединить усилия, чтобы разработать память, которая заполняет разрыв между оперативной и постоянной памятью и обеспечивает сближение их характеристик, и дали возможность использовать последнюю в качестве оперативной. Такая память получила название Storage Class Memory (SCM).

Обычная флэш-память (USB) производится на базе технологии NAND, использующейся в обычных флешках, картах памяти для фотоаппаратов, навигаторах и пр. Затем по такой технологии стали производить твердотельные накопители SSD для компьютеров, объединяя несколько флэш-модулей в массив RAID. Вначале накопители SSD производились по технологии ячеек SLC (Single Level Cell), хранящих 1 бит. Затем появились MLC-накопители (Multiple Level Cell) с хранением 2 битов в ячейке, TLC с тремя битами и, наконец, QLC с четырьмя битами в ячейке памяти.

В 2015 году корпорации Intel и Micron предложили альтернативу NAND – технологию 3D XPoint («Три ди кросс пойнт»). Производство планировалось на совместном предприятии IM Flash Technologies. Накопители Intel производятся по этой технологией под маркой Optane, а накопители Micron – под маркой QuantX («Квант икс»).

Принцип работы 3D XPoint никогда не раскрывался подробно, согласно соглашению между Intel и Micron. Компании ограничивались заявлениями, что уникальные свойства 3D XPoint обусловлены «множеством свойств материалов» (букв. bulk material properties). Из картинок, гуляющих по интернету, видно только, что это многослойная структура.

Одна из картинок, иллюстрирующих устройство 3D XPoint, но не дающая достаточного представления о принципе ее работы

Однако в июле 2018 года Intel и Micron сообщили о прекращении совместной работы над 3D XPoint. В октябре 2018 года в ходе судебного разбирательства о разделе интеллектуальной и недвижимой собственности Intel предоставила Micron право выкупа СП IM Flash, что она и сделала в начале 2019 года. В начале 2020 года партнеры подписали соглашение о том, что Micron продолжит выпускать память 3D XPoint и поставлять ее Intel.

Однако в 2020 году судебное разбирательство продолжилось и компания Micron была обвинена в незаконном прекращении выплаты лицензионных отчислений за патенты, благодаря которым появилась память 3D XPoint. В октябре 2020 года суд также объявил Intel, что она не имеет прав интеллектуальной собственности на продукт 3D XPoint. Выяснилось, что долго скрываемый принцип работы ячейки 3D XPoint заключается в эффекте обратимого изменения фазового состояния вещества. То есть это память типа PRAM (Phase-change Random Access Memory), разработанная другой компанией. С точки зрения американского суда получается, что Intel и Micron пытались мошеннически завладеть правами на данную разработку.

Суд выяснил, что принцип памяти PRAM, который по его мнению, лег в основу 3D XPoint, был опубликован около 60 лет назад американским ученым Стэнфордом Овшинским (Stanford Ovshinsky), который зарегистрировал патент на ячейку памяти под названием Ovonic от имени компании Ovonyx, наследником которой стала компания Energy Conversion Devices (ECD). Лицензия на память Ovonic приобреталась и другими компаниями, в т. ч. Intel и Micron.

Затем, вследствие ряда причин, компания ECD обанкротилась, и для ее ликвидации в 2012 году была создана трастовая компания ECDL Trust. Однако в том же 2012 году ECD продала акции Ovonyx компании Micron, которая в 2015 году стала ее владельцем. С 2012 года и до анонса памяти 3D XPoint, компаниями Micron и Intel был совершен ряд манипуляций, направленных на то, чтобы прекратить выплачивать компании ECD лицензионные отчисления и стать собственниками технологии под названием 3D XPoint.

Конечно, это решение суда не остановит производство, но и вряд ли приведет к снижению цен на накопители 3D XPoint, которые стоят относительно дорого. Чем закончится эта мутная история, пока не ясно.

  • CTM (Charge trap memory).
  • PCM (Phase-change memory PRAM).
  • FRAM, (ferroelectric RAM, FeRAM).
  • RRAM (resistive RAM).
  • CBRAM (conductive bridge RAM).
  • MRAM (magnetoresistive RAM).
  • STT RAM (Spin-transfer torque RAM).

Виды запоминающих устройств — Dropbox Business

Хранение данных в компьютерных системах

Запоминающее устройство — это элемент аппаратного обеспечения, которое в основном используется для хранения данных. В каждом настольном компьютере, ноутбуке, планшете и смартфоне есть тот или иной вид запоминающего устройства. Также можно приобрести автономные внешние накопители, которые используются с разными устройствами.

Запоминающие устройства нужны не только для хранения файлов, но и для работы задач и приложений. Любой файл, который вы создаете или сохраняете на своем компьютере, сохраняется на соответствующем запоминающем устройстве. На нем же хранятся любые используемые вами приложения, а также операционная система вашего компьютера.

По мере развития технологий запоминающие устройства претерпели значительные изменения. На сегодняшний день существуют запоминающие устройства разных форм и размеров, а также есть типы запоминающих устройств, которые могут использоваться с разными устройствами и выполнять разные функции.

Запоминающие устройства также называют носителями данных. Размер цифровых запоминающих устройств измеряется в мегабайтах (МБ), гигабайтах (ГБ), а на сегодня — уже и в терабайтах (ТБ).

Некоторые запоминающие устройства для компьютеров обеспечивают постоянное хранение информации, а другие предназначены только для временного хранения. Каждый компьютер имеет первичное и вторичное запоминающее устройство. Первичное работает как кратковременное запоминающее устройство, а вторичное — как долговременное.

Первичное запоминающее устройство: оперативная память (ОЗУ)

Оперативная память, или ОЗУ, — это первичное запоминающее устройство компьютера.

Когда вы работаете с файлом на своем компьютере, он временно сохраняет данные в оперативной памяти. ОЗУ обеспечивает выполнение повседневных задач, таких как открытие приложений, загрузка веб-страниц, редактирование документов или функционирование игр, а также позволяет быстро переключаться между задачами без потери той части работы, которая уже была выполнена. По сути, чем больше объем оперативной памяти вашего компьютера, тем более слаженно и быстро вы сможете работать над несколькими задачами одновременно.

ОЗУ — энергозависимая память, что означает, что она не обеспечивает хранение информации после выключения системы. Например, если вы скопируете фрагмент текста, перезагрузите компьютер, а затем попытаетесь вставить этот блок текста в документ, вы обнаружите, что ваш компьютер не запомнил текст. Это произошло потому, что ОЗУ обеспечивает только временное хранение.

ОЗУ позволяет компьютеру получать доступ к данным в произвольном порядке, обеспечивая их более быстрое считывание и запись, в отличие от вторичного запоминающего устройства.

Вторичные запоминающие устройства: жесткие диски (HDD) и твердотельные накопители (SSD)

Кроме ОЗУ на каждом компьютере также есть другой накопитель информации, который используется для долгосрочного хранения — вторичное запоминающее устройство. Любой файл, который вы создаете или скачиваете на свой компьютер, сохраняется на его вторичное запоминающее устройство. В компьютерах в качестве вторичных используются два типа запоминающих устройств: жесткие диски и твердотельные накопители. Жесткие диски — более традиционный вариант, но твердотельные накопители быстро обгоняют их в популярности.

Вторичные запоминающие устройства часто являются съемными, поэтому их можно заменять или модернизировать, а также перемещать съемные накопители на другие компьютеры. Однако есть и исключения, например MacBook, которые не имеют съемного запоминающего устройства.

Жесткие диски (HDD)

HDD — это оригинальные жесткие диски. Это магнитные запоминающие устройства, которые существуют с 1950-х годов, хотя со временем они сильно эволюционировали.

Жесткий диск состоит из набора вращающихся металлических дисков, называемых пластинами. Каждая вращающаяся пластина содержит триллионы крошечных фрагментов, которые можно намагничивать, чтобы записывать на них биты информации (бинарный код, состоящий из нулей и единиц). Рычаг-коромысло с головкой для записи и чтения позволяет сканировать вращающиеся магнитные пластины для записи информации на жесткий диск или определения магнитного заряда для считывания информации с него.

Жесткие диски используются не только в качестве запоминающих устройств для ноутбуков и ПК, но и для телевизионных и спутниковых рекордеров и серверов.

Твердотельные накопители (SSD)

Твердотельные накопители появились гораздо позже, в 90-х годах. В них нет никаких магнитов и дисков, вместо этого используется флеш-память типа NAND. В твердотельных накопителях используются полупроводники, которые хранят информацию, изменяя электрический ток цепей, содержащихся в накопителе. Это означает, что, в отличие от жестких дисков, твердотельные накопители не имеют движущихся частей.

Поэтому твердотельные накопители не только работают быстрее и плавнее, чем жесткие диски (жестким дискам требуется больше времени для сбора информации из-за механической природы их пластин и головок), но и, как правило, служат дольше (из-за большого количества сложных движущихся частей жесткие диски больше подвержены повреждениям и износу).

Твердотельные накопители используются не только в новых ПК и ноутбуках высокого класса, но и в смартфонах, планшетах, а иногда и в видеокамерах.

Внешние запоминающие устройства

Помимо носителей информации, размещенных в компьютере, существуют также внешние цифровые запоминающие устройства. Они обычно используются с целью увеличения объема места для хранения, когда на компьютере мало места, а также чтобы обеспечить большую мобильность и облегчить передачу файлов с одного устройства на другое.

Внешние жесткие диски и твердотельные накопители

В качестве внешних накопителей можно использовать как жесткие диски, так и твердотельные накопители. Как правило, среди внешних запоминающих устройств они обеспечивают самый большой объем места: внешние жесткие диски — до 20 ТБ памяти, а внешние твердотельные накопители (по разумной цене) — до 8 ТБ.

Внешние жесткие диски и твердотельные накопители работают так же, как и их внутренние аналоги. Большинство внешних накопителей можно подключить к любому компьютеру; они не привязаны к одному устройству, поэтому могут отлично использоваться для передачи файлов между устройствами.

Устройства флеш-памяти

Мы уже упоминали флеш-память, когда обсуждали твердотельные накопители. Устройства флеш-памяти состоят из триллионов взаимосвязанных ячеек флеш-памяти, в которых хранятся данные. Эти ячейки содержат миллионы транзисторов, которые при включении и выключении представляют единицы и нули в двоичном коде, а компьютер считывает и записывает информацию на основе электрического тока, проходящего через транзисторы.

Пожалуй, самый известный тип устройства флеш-памяти — это USB-накопитель. Эти небольшие портативные запоминающие устройства, также известные как флеш-накопители, или просто «USB», долгое время были популярным вариантом дополнительных компьютерных запоминающих устройств. До того как Интернет обеспечил нам возможность легко и быстро обмениваться файлами, USB-накопители были незаменимы для перемещения файлов с одного устройства на другое.

В наши дни USB-накопитель может вместить до 2 ТБ данных. Если посчитать стоимость хранения гигабайта данных, USB-накопитель будет дороже, чем внешний жесткий диск. Хотя флеш-накопители нечасто используют для хранения всех персональных данных, они популярны для временного хранения и переноса небольших файлов благодаря своей простоте и удобству.

Помимо USB-накопителей, к устройствам флеш-памяти также относятся SD-карты и карты памяти других типов, которые часто используются в качестве носителей информации в цифровых камерах.

Оптические запоминающие устройства

Компакт-диски, DVD-диски и диски Blu-Ray используются не только для воспроизведения музыки и видео, но и как запоминающие устройства. Они относятся к категории оптических запоминающих устройств, или оптических дисков.

Двоичный код хранится на этих дисках в виде крохотных выемок (питов) на дорожке, идущей по спирали из центра диска. Работающий диск вращается с постоянной скоростью, а лазер на дисковом накопителе сканирует дорожку на диске. То, как луч лазера отражается или рассеивается на участке дорожки, определяет, записан ли на нем 0 или 1 в бинарном коде.

DVD имеет более узкую спиральную дорожку, чем компакт-диск, что позволяет хранить больше данных при том же размере диска, а в дисководах DVD используется более тонкий красный лазер, чем в дисководах компакт-дисков. DVD также могут быть двухслойными, что увеличивает их емкость. Blu-Ray — это технология более высокого уровня, обеспечивающая хранение данных на нескольких слоях с еще более узкими дорожками, для считывания которых требуется еще более точный синий лазер.

CD-ROM, DVD-ROM и BD-ROM относятся к категории оптических дисков, предназначенных только для чтения, что означает, что записанные на них данные сохраняются навсегда и не могут быть удалены или перезаписаны. Они обычно используются для хранения дистрибутивов программного обеспечения, но не в качестве запоминающего устройства для персональной информации.

На диски формата CD-R, DVD-R и BD-R можно записывать информацию, но они не предусматривают перезаписи. Какие бы данные вы ни сохранили на чистом диске одноразовой записи, они останутся на нем навсегда. На этих дисках можно хранить данные, но они не обеспечивают такой гибкости, как другие запоминающие устройства.

CD-RW, DVD-RW и BD-RE предусматривают перезапись, поэтому вы можете постоянно записывать на них новые данные и удалять ненужные. Диски CD-RW долгое время были лучшим вариантом внешнего хранилища, так как большинство настольных компьютеров и многие ноутбуки имеют дисковод для CD- или DVD-дисков, хотя их место постепенно занимают новые технологии, такие как флеш-память.

На компакт-диске можно хранить до 700 МБ данных, на DVD-DL — до 8,5 ГБ, а на Blu-Ray — от 25 до 128 ГБ.

Дискеты

Сейчас эти устройства считаются устаревшими, но мы не можем обсуждать запоминающие устройства, не упомянув их. Дискеты были первыми широко доступными портативными съемными запоминающими устройствами. Они работают по тому же принципу, что и жесткие диски, но в гораздо меньшем масштабе.

Емкость дискет никогда не превышала 200 МБ, пока CD-RW и флеш-накопители не стали популярными носителями информации. iMac стал первым персональным компьютером, выпущенным без дисковода гибких дисков в 1998 году, и с этого момента закончилось более чем 30-летнее господство гибких дисков.

Облачное хранилище

Облачные хранилища, которые не являются устройствами в полном смысле этого слова, представляют собой самый новый и гибкий тип хранилищ данных для компьютеров. Облако — это не место и не объект, а огромное количество серверов, расположенных в центрах обработки данных по всему миру. Когда вы храните документ в облаке, вы храните его на этих серверах.

Поскольку все хранится онлайн, облачное хранилище не предусматривает использования локальных накопителей вашего компьютера, что позволяет сэкономить место на них.

Облачное хранилище обеспечивает значительно больший объем места, чем USB-накопители и другие физические устройства, избавляя вас от необходимости искать нужный файл по всем устройствам.

Жесткие диски и твердотельные накопители, популярные благодаря своей портативности, также уступают облачным хранилищам. Существует не так уж много карманных внешних жестких дисков, хотя они, несомненно, меньше по размеру и легче по весу, чем внутренние накопители, но это реальные устройства, требующие внимания. А облако может «сопровождать» вас где угодно: оно вообще не занимает места и не уязвимо физически, как внешний диск.

Внешние запоминающие устройства также были популярны как быстрый вариант передачи файлов, но они удобны только в том случае, если вы имеете физический доступ к каждому устройству. Сейчас, когда многие компании переходят на удаленную работу, облачные технологии стремительно развиваются. Вряд ли вам будет удобно отправлять USB-накопитель по почте за границу, чтобы передать большой файл коллеге, а облако обеспечивает связь между удаленными сотрудниками, упрощая совместную работу на расстоянии.

Если вы забудете принести на встречу жесткий диск с важными документами, у вас не будет другого выхода, кроме как вернуться за ним. Если вы сломаете или потеряете жесткий диск, вряд ли вы сможете восстановить эти данные. В облачном хранилище нет таких рисков: для ваших данных создаются резервные копии, и вы имеете к ним доступ в любое время и из любой точки, где есть подключение к Интернету.

Благодаря функции Dropbox Smart Sync вы можете получить доступ к любому файлу в Dropbox прямо со своего рабочего стола, как если бы ваши файлы хранились локально, только при этом они не занимают места на вашем диске. Если вы храните все ваши файлы в Dropbox, они всегда на расстоянии одного клика и доступны с любого устройства с подключением к Интернету. К тому же вы можете мгновенно поделиться ими.

Тест «Определи свой тип памяти»

Ваша конфиденциальность очень важна для нас. Мы хотим, чтобы Ваша работа в Интернет по возможности была максимально приятной и полезной, и Вы совершенно спокойно использовали широчайший спектр информации, инструментов и возможностей, которые предлагает Интернет.

Личная информация Членов, собранная при регистрации (или в любое другое время) преимущественно используется для подготовки Продуктов или Услуг в соответствии с Вашими потребностями. Ваша информация не будет передана или продана третьим сторонам. Однако мы можем частично раскрывать личную информацию в особых случаях, описанных в «Согласии с рассылкой»

Какие данные собираются на сайте

При добровольной регистрации на получение рассылки «Инсайдер интернет предпринимателя» вы отправляете свое Имя и E-mail через форму регистрации.

С какой целью собираются эти данные

Имя используется для обращения лично к вам, а ваш e-mail для отправки вам писем рассылок, новостей тренинга, полезных материалов, коммерческих предложений.

Ваши имя и e-mail не передаются третьим лицам, ни при каких условиях кроме случаев, связанных с исполнением требований законодательства. Ваше имя и e-mail на защищенных серверах сервиса getresponse.com и используются в соответствии с его политикой конфиденциальности.

Вы можете отказаться от получения писем рассылки и удалить из базы данных свои контактные данные в любой момент, кликнув на ссылку для отписки, присутствующую в каждом письме.

Как эти данные используются

На сайте www.ismart.by используются куки (Cookies) и данные о посетителях сервиса Google Analytics.

При помощи этих данных собирается информация о действиях посетителей на сайте с целью улучшения его содержания, улучшения функциональных возможностей сайта и, как следствие, создания качественного контента и сервисов для посетителей.

Вы можете в любой момент изменить настройки своего браузера так, чтобы браузер блокировал все файлы cookie или оповещал об отправке этих файлов. Учтите при этом, что некоторые функции и сервисы не смогут работать должным образом.

Как эти данные защищаются

Для защиты Вашей личной информации мы используем разнообразные административные, управленческие и технические меры безопасности. Наша Компания придерживается различных международных стандартов контроля, направленных на операции с личной информацией, которые включают определенные меры контроля по защите информации, собранной в Интернет.

Наших сотрудников обучают понимать и выполнять эти меры контроля, они ознакомлены с нашим Уведомлением о конфиденциальности, нормами и инструкциями.

Тем не менее, несмотря на то, что мы стремимся обезопасить Вашу личную информацию, Вы тоже должны принимать меры, чтобы защитить ее.

Мы настоятельно рекомендуем Вам принимать все возможные меры предосторожности во время пребывания в Интернете. Организованные нами услуги и веб-сайты предусматривают меры по защите от утечки, несанкционированного использования и изменения информации, которую мы контролируем. Несмотря на то, что мы делаем все возможное, чтобы обеспечить целостность и безопасность своей сети и систем, мы не можем гарантировать, что наши меры безопасности предотвратят незаконный доступ к этой информации хакеров сторонних организаций.

В случае изменения данной политики конфиденциальности вы сможете прочитать об этих изменениях на этой странице или, в особых случаях, получить уведомление на свой e-mail.

Типы памяти | Общество Альцгеймера

Рабочая память

Вы используете это для кратковременного хранения информации. Например, рабочая память нужна для запоминания чисел, когда вы мысленно подсчитываете числа.

Если у вас проблемы с рабочей памятью, вам может потребоваться больше времени, чтобы что-то выяснить. Например, вам может потребоваться больше времени на обработку монет в супермаркете до.

Эпизодическая память

Это нужно для того, чтобы вспомнить прошлые события — недавние или далекие.

Вы используете эпизодическую память, когда вспоминаете личные переживания, например, что вы ели на обед или когда были на семейном собрании. Эти воспоминания часто включают воспоминания об эмоциях или чувствах.

Если вы изо всех сил пытаетесь вспомнить недавние воспоминания, например, где вы припарковали машину, у вас могут быть проблемы с эпизодической памятью.

Семантическая память

Вы используете это, чтобы запоминать значения слов или запоминать факты. Вы также можете использовать его для запоминания знакомых лиц или предметов.

Если у вас проблемы с семантической памятью, у вас могут возникнуть трудности с поиском нужных слов, когда вы с кем-то разговариваете.

Перспективная память

Вы используете это, чтобы помнить о встрече, дате или событии, которое должно произойти в будущем.

Если у вас проблемы с предполагаемой памятью, вы можете забыть что-то сделать в определенное время. Или вы можете забыть, что вы что-то запланировали, например, навещали друга.

Процедурная память

Это включает в себя действия, которые вы изучаете и затем можете выполнять автоматически, не думая.Вы используете процедурную память для выполнения последовательности действий в определенном порядке, таких как завязывание шнурков или плавание. Вы полагаетесь на это, когда приобретаете новые привычки. Это может включать обучение использованию новых вспомогательных средств памяти.

Используя свои чувства

Ваша память принимает информацию, полученную от ваших органов чувств.

Наши пять чувств:

  • Прицел
  • Запах
  • Вкус
  • Сенсорный
  • Слух

Вы можете вспомнить информацию, хранящуюся в вашей памяти, с помощью или без подсказок от ваших органов чувств.Однако подсказка часто может помочь.

Примеры подсказок

  • Фотография кого-то может навести на память о забытом имени (взгляде).
  • Определенный парфюм может вызвать воспоминания о ком-то особенном (запах).
  • Вкус блюда может вызвать воспоминание о том, когда вы его впервые съели (вкус).
  • Ощущение песка под пальцами ног может вызвать воспоминания о детском празднике (прикосновении).
  • Музыкальное произведение может вызвать воспоминания о том, когда вы впервые встретили своего партнера (слушание).

Процесс запоминания

Когда вы «записываете» воспоминание, а затем возвращаете его, ваш разум проходит через этот процесс:

Получение

Вы получаете информацию, полученную через ваши пять органов чувств.

Кодировка

Ваш мозг преобразует эту информацию в форму, которую можно сохранить. Он сохраняется первым в вашей кратковременной памяти.

Хранение

Вы переносите часть информации из кратковременной памяти в хранилище долговременной памяти.Это может занять много месяцев, и вам можно помочь, повторяя это снова и снова в уме (так называемая «репетиция»).

Получение

Вы вспоминаете информацию, хранящуюся в вашей долговременной памяти.

Проблемы с памятью могут быть вызваны неполадками на любом из этих этапов. Способ хранения и извлечения информации может быть очень специфичным для каждого человека. Часто это зависит от того, насколько важна для вас информация.

Проблемы с памятью могут быть трудными, но важно попробовать, так как есть много способов помочь вашей памяти.Большинство людей уже используют определенные техники, которые помогают им запоминать вещи.

RAM и модуль памяти DRAM

Компьютерная память обычно классифицируется как внутренняя или внешняя.

Внутренняя память , также называемая «основной или первичной памятью», относится к памяти, в которой хранятся небольшие объемы данных, к которым можно быстро получить доступ во время работы компьютера.

Внешняя память , также называемая «вторичной памятью», относится к запоминающему устройству, которое может постоянно хранить или хранить данные.Они могут быть встроенными или съемными запоминающими устройствами. Примеры включают жесткие диски или твердотельные накопители, USB-накопители и компакт-диски.

Какие типы внутренней памяти?

Существует два основных типа внутренней памяти: ROM и RAM.

ПЗУ обозначает постоянную память. Он энергонезависимый, что означает, что он может сохранять данные даже без питания. Он используется в основном для запуска или загрузки компьютера.

После загрузки операционной системы компьютер использует RAM , что означает оперативную память, которая временно хранит данные, пока центральный процессор (ЦП) выполняет другие задачи.Чем больше ОЗУ на компьютере, тем меньше ЦП должен считывать данные из внешней или вторичной памяти (запоминающего устройства), что позволяет компьютеру работать быстрее. Оперативная память работает быстро, но непостоянно, что означает, что она не сохраняет данные при отсутствии питания. Поэтому важно сохранить данные на запоминающем устройстве до выключения системы.

Какие бывают типы оперативной памяти?

Существует два основных типа ОЗУ: динамическое ОЗУ (DRAM) и статическое ОЗУ (SRAM).

  • DRAM (произносится как DEE-RAM) широко используется в качестве основной памяти компьютера.Каждая ячейка памяти DRAM состоит из транзистора и конденсатора в интегральной схеме, а бит данных хранится в конденсаторе. Поскольку транзисторы всегда имеют небольшую утечку, конденсаторы будут медленно разряжаться, вызывая утечку информации, хранящейся в них; следовательно, DRAM необходимо обновлять (получать новый электронный заряд) каждые несколько миллисекунд для сохранения данных.
  • SRAM (произносится как ES-RAM) состоит из четырех-шести транзисторов. Он хранит данные в памяти до тех пор, пока в систему подается питание, в отличие от DRAM, который необходимо периодически обновлять.Таким образом, SRAM быстрее, но также дороже, что делает DRAM более распространенной памятью в компьютерных системах.
Каковы общие типы DRAM?
  • Synchronous DRAM (SDRAM) «синхронизирует» скорость памяти с тактовой частотой процессора, так что контроллер памяти знает точный тактовый цикл, когда запрошенные данные будут готовы. Это позволяет процессору выполнять больше инструкций за один раз. Типичная SDRAM передает данные со скоростью до 133 МГц.

  • Rambus DRAM (RDRAM) назван в честь компании-производителя Rambus. Он был популярен в начале 2000-х и в основном использовался для видеоигровых устройств и видеокарт со скоростью передачи данных до 1 ГГц.

  • SDRAM с двойной скоростью передачи данных (DDR SDRAM) — это тип синхронной памяти, которая почти вдвое увеличивает пропускную способность SDRAM с одинарной скоростью передачи данных (SDR), работающей на той же тактовой частоте, за счет использования метода, называемого «двойной накачкой», который позволяет передавать данных как по нарастающим, так и по спадающим фронтам тактового сигнала без какого-либо увеличения тактовой частоты.

  • DDR1 SDRAM сменили DDR2, DDR3 и совсем недавно DDR4 SDRAM. Хотя модули работают по одним и тем же принципам, они не имеют обратной совместимости. Каждое поколение обеспечивает более высокую скорость передачи и более высокую производительность. Например, новейшие модули DDR4 обеспечивают высокую скорость передачи данных — 2133/2400/2666 и даже 3200 МТ / с.


Рисунок 1. Типы памяти компьютера.

Какие типы пакетов DRAM?
  • Single In-Line Memory Module (SIMM)
    Модули SIMM широко использовались с конца 1980-х по 1990-е годы, и сейчас они устарели. Обычно они имели 32-битную шину данных и были доступны в двух физических типах — 30- и 72-контактном.

  • Dual In-Line Memory Module (DIMM)
    Текущие модули памяти поставляются в виде модулей DIMM. «Двойной ряд» относится к контактам на обеих сторонах модулей. Изначально модуль DIMM имел 168-контактный разъем, поддерживающий 64-битную шину данных, что вдвое превышает ширину данных модулей SIMM.Более широкая шина означает, что через модуль DIMM может проходить больше данных, что повышает общую производительность. Последние модули DIMM на базе SDRAM четвертого поколения с двойной скоростью передачи данных (DDR4) имеют 288-контактные разъемы для увеличения пропускной способности.

Какие бывают типы модулей DIMM?

Существует несколько архитектур DIMM. Различные платформы могут поддерживать разные типы памяти, поэтому лучше проверить, какие модули поддерживаются на материнской плате. Вот наиболее распространенные стандартные модули DIMM, типичная длина которых составляет 133.35 мм и высотой 30 мм.

DIMM Тип

Описание

Модули DIMM без буферизации
(модули UDIMM)

Используется в основном на настольных и портативных компьютерах. Они работают быстрее и дешевле, но не так стабильны, как зарегистрированная память. Команды поступают напрямую от контроллера памяти, находящегося в ЦП, к модулю памяти.

Модули DIMM с полной буферизацией
(модули FB-DIMM)

Обычно используемые в качестве основной памяти в системах, требующих большой емкости, таких как серверы и рабочие станции, модули FB-DIMM используют микросхемы расширенного буфера памяти (AMB) для повышения надежности, поддержания целостности сигнала и улучшения методов обнаружения ошибок для уменьшения числа программных ошибок. Шина AMB разделена на 14-битную шину чтения и 10-битную шину записи. Благодаря выделенной шине чтения / записи чтение и запись могут происходить одновременно, что приводит к повышению производительности.Меньшее количество выводов (69 выводов на последовательный канал по сравнению с 240 выводами на параллельных каналах) приводит к меньшей сложности маршрутизации и позволяет создавать платы меньшего размера для компактных систем с малым форм-фактором.

зарегистрированных модулей DIMM
(RDIMM)

Также известная как «буферизованная» память, часто используется в серверах и других приложениях, требующих стабильности и надежности. Модули RDIMM имеют встроенные регистры памяти (отсюда и название «зарегистрированные»), размещенные между памятью и контроллером памяти.Контроллер памяти буферизует команды, адресацию и цикл часов, направляя инструкции в выделенные регистры памяти вместо прямого доступа к DRAM. В результате инструкции могут занимать примерно на один цикл ЦП больше, но буферизация снижает нагрузку на контроллер памяти ЦП.

DIMM со сниженной нагрузкой
(LR-DIMM)

Используйте технологию изолированного буфера памяти (iMB), которая снижает нагрузку на контроллер памяти за счет буферизации как данных, так и адресных линий.В отличие от регистра RDIMM, который буферизует только команды, адресацию и циклическую синхронизацию, микросхема iMB также буферизует сигналы данных. Микросхема iMB изолирует всю электрическую нагрузку, включая сигналы данных микросхем DRAM на DIMM, от контроллера памяти, поэтому контроллер памяти видит только iMB, а не микросхемы DRAM. Затем буфер памяти обрабатывает все операции чтения и записи в микросхемы DRAM, увеличивая как емкость, так и скорость. (Источник: буфер памяти изоляции)

Таблица 1.Распространенные типы модулей DIMM.

Существуют ли модули DIMM малого форм-фактора, помимо модулей DIMM стандартного размера, для систем с ограниченным пространством?

Модули DIMM малого размера (SO-DIMM) представляют собой меньшую альтернативу модулям DIMM. Стандартный модуль DIMM DDR4 имеет длину около 133,35 мм, а модули SO-DIMM примерно вдвое меньше обычных модулей DIMM и имеют длину 69,6 мм, что делает их идеальными для сверхпортативных устройств. Оба обычно имеют высоту 30 мм, но могут быть доступны в формате очень низкого профиля (VLP) высотой 20,3 мм или сверхнизкого профиля (ULP) при высоте 17 мм.От 8 до 18,2 мм. Другой тип модулей DIMM малого форм-фактора — это Mini-RDIMM, длина которого составляет всего 82 мм по сравнению со 133 мм обычных модулей RDIMM.

Продукты ATP DRAM

ATP предлагает промышленные модули памяти различной архитектуры, емкости и форм-факторов. Модули ATP DRAM обычно используются в промышленных ПК и встроенных системах. Устойчивые к вибрации, ударам, пыли и другим неблагоприятным условиям, модули ATP DRAM хорошо работают даже при самых сложных рабочих нагрузках и приложениях, а также в различных операционных средах.

Стремясь обеспечить долговечность продукта, ATP также продолжает предлагать устаревшие модули DRAM в некоторых форм-факторах в соответствии с лицензионным соглашением с Micron Technology, Inc. Для получения информации о устаревших продуктах ATP SDRAM посетите Legacy SDRAM.

Для обеспечения высокой надежности ATP проводит тщательные испытания и валидацию от уровня IC до уровней модулей и продуктов с использованием оборудования для автоматических испытаний (ATE) для различных электрических параметров, таких как предельное напряжение, частота сигнала, тактовая частота, синхронизация команд и синхронизация данных в непрерывном тепловом режиме. циклы.Тест во время выгорания (TDBI) использует специальную миниатюрную тепловую камеру, где модули подвергаются низкому и повышенному тепловым испытаниям для выявления дефектных компонентов и минимизации детской смертности IC, что обеспечивает более высокое качество производства и снижает количество фактических отказов на месте.

В таблице ниже показаны продукты DDR4 DRAM от ATP.

DIMM Тип

Размер (Д x В мм) / изображение

DDR4
RDIMM ECC

Стандарт: 133.35 х 31,25

Очень низкий профиль (VLP): 133,35 x 18,75

DDR4
UDIMM ECC

133,35 x 31,25

DDR4
SO-DIMM ECC

69,6 x 30

DDR4
Mini-DIMM
Без буферизации ECC

Очень низкий профиль (VLP): 80 x 18.75

Таблица 2. Продукты ATP DDR4 DRAM. (Также доступны версии без ECC.)

В таблице ниже показано сравнение размеров различных типов модулей DRAM.

DIMM Тип

Размер (Д x В мм)

DDR4

Стандартный

133.35 х 31,25

VLP (очень низкий профиль)

133,35 х 18,75

DDR3

Стандартный

133,35 х 30

ВЛП

от 133,35 x 18,28 до 18,79

ULP (сверхнизкий профиль)

133.От 35 x 17,78 до 18,28

DDR2

Стандартный

133,35 х 30

ВЛП

от 133,35 x 18,28 до 18,79

ГДР

Стандартный

133,35 х 30

ВЛП

133.От 35 x 18,28 до 18,79

SDRAM

Стандартный

от 133,35 x 25,4 до 43,18

Таблица 3. Сравнение размеров DDR4 / DDR3 / DDR2 / DDR.

Оперативная память (RAM) и постоянная память (ROM)

Память является наиболее важным элементом вычислительной системы, потому что без нее компьютер не может выполнять простые задачи.Компьютерная память бывает двух основных типов — первичная память (RAM и ROM) и вторичная память (жесткий диск, компакт-диск и т. Д.). Оперативная память (RAM) является первичной энергозависимой памятью, а постоянная память (ROM) является первичной энергонезависимой памятью.

1. Оперативная память (RAM) —

  • Она также называется памятью чтения-записи или основной памятью или первичной памятью .
  • В этой памяти хранятся программы и данные, которые требуются ЦП во время выполнения программы.
  • Это энергозависимая память, так как данные теряются при отключении питания.
  • RAM далее подразделяется на два типа — SRAM (статическая память с произвольным доступом), и DRAM (динамическая память с произвольным доступом), .


2. Постоянное запоминающее устройство (ПЗУ) —

  • Хранит важную информацию, необходимую для работы системы, например программу, необходимую для загрузки компьютера.
  • Не летуч.
  • Всегда сохраняет свои данные.
  • Используется во встроенных системах или там, где программирование не требует изменений.
  • Используется в калькуляторах и периферийных устройствах.
  • ROM дополнительно подразделяется на 4 типа: ROM , PROM , EPROM и EEPROM .

Типы постоянной памяти (ROM) —

  1. PROM (Программируемая постоянная память) — Может быть запрограммирована пользователем.После программирования данные и инструкции в нем не могут быть изменены.
  2. EPROM (стираемая программируемая постоянная память) — Его можно перепрограммировать. Чтобы стереть с него данные, подвергните его воздействию ультрафиолета. Чтобы перепрограммировать его, удалите все предыдущие данные.
  3. EEPROM (электрически стираемое программируемое постоянное запоминающее устройство) — данные можно стереть, приложив электрическое поле, без необходимости использования ультрафиолетового света. Мы можем стереть только части чипа.

Вниманию читателя! Не прекращайте учиться сейчас. Примите участие в экзамене на получение стипендии для курса «Первый шаг к DSA» для учащихся 9–12 классов .

3 основных типа памяти и каждый подтип: полное руководство

Сколько у нас разных типов памяти?

Если поискать в Интернете, можно найти множество ответов.

Но это три, четыре, пять или больше?

И если вы найдете правильное число, сколько вы сможете улучшить?

Запутались?

Вы не одиноки.

Путаница понятна, потому что наука о памяти — сложная и постоянно развивающаяся область.

Фактически, существует ряд моделей типов памяти, которые эксперты и ученые предлагали на протяжении многих лет. Как видно из этой инфографики, типы памяти также различаются по разным дисциплинам:

В то время как биология и психология описывают различные типы моделей памяти с помощью определенных видов терминологии, в социальных и культурных исследованиях есть свои собственные слова и термины.Обе области также развиваются и часто добавляют или меняют термины по мере проведения дополнительных исследований.

Это лишь некоторые из причин, по которым так много терминологии.

Итак, помня об этом, каковы основные типы памяти? Виды, которые вам действительно нужно знать.

Три основных типа человеческой памяти

В этом посте мы рассмотрим 3 основных типа человеческой памяти в качестве наших ключевых проводников в этот мир обучения и запоминания:

  • Сенсорная память
  • Кратковременная память
  • Долговременная память

Вы увидите, как эти три типа памяти можно разделить на различные составные части.

В совокупности эти части образуют то, что вы можете назвать «оркестром памяти» — набор типов памяти, которые наш мозг использует, чтобы помочь нам ориентироваться в мире.

Эти три вида памяти также являются основой для трехэтапной или многоуровневой модели памяти, предложенной Аткинсоном и Шиффрином в 1968 году. Это до сих пор наиболее согласованная модель памяти в науке, которая получила дальнейшее развитие в других академических кругах.

По сути, это выглядит так, начиная с информации, с которой сталкивается ваша сенсорная память:

Эта инфографика представляет собой один из способов представления трехэтапной или многоуровневой модели памяти, впервые предложенной Аткинсоном и Шиффрином в 1968 году.

  • Сенсорное (иконическое, тактильное, эхогенное, обонятельное и вкусовое)
  • Кратковременная (включая рабочую память)
  • Долгосрочная — явная (включая декларативную, эпизодическую и семантическую) и неявную память (включая процедурную)

Как видите, эти три типа памяти служат в качестве общих терминов для различных других типов памяти. К концу статьи вы узнаете о различных типах памяти и о том, как эти знания могут помочь вашей памяти!

Давайте начнем с первого типа памяти, на который мы все полагаемся в первую очередь.

Один: сенсорная память

Этот тип человеческой памяти напрямую связан с пятью чувствами.

Эти чувства часто возникают в течение нескольких секунд или могут длиться несколько минут.

Джордж Сперлинг, когнитивный психолог, работавший в 1960-х годах, проделал важную работу, которая установила, насколько коротка сенсорная память. Он обнаружил, что большая часть наших сенсорных воспоминаний исчезает в течение четверти секунды.

Несмотря на кратковременность, все воспоминания, которые мы когда-либо сохраняем, начинаются здесь и исходят от вашего взгляда, запаха, прикосновения, вкуса или от того, что вы слышите.Вот названия конкретных типов памяти.

Сенсорная память делится на несколько подкатегорий.

Сенсорная память включает по крайней мере эти пять способов сенсорного восприятия.

Iconic — относится к нашему визуальному опыту

Эхо — звуки, которые мы слышим.

Тактильный — касающийся прикосновения

Обонятельные — относящиеся к запаху

Вкусовые — относящиеся к вкусу

Само собой разумеется, что чем больше чувств задействовано, тем более запоминающимся будет ввод.Как следствие, с большей вероятностью информация останется в долговременной памяти.

Если вы хотите гарантировать, что ваша сенсорная память работает лучше, попробуйте эти уроки:

Два: Кратковременная память

Пройдя через нашу сенсорную память, информация затем переходит в нашу краткосрочную память.

Подобно сенсорным воспоминаниям, мы сохраняем новые воспоминания на очень короткий период — обычно до 30 секунд.

Джордж Миллер описал этот вид памяти в своем классическом исследовании 1956 года: «Магическое число семь плюс-минус два: некоторые ограничения нашей способности обрабатывать информацию.”

Это исследование хорошо известно тем, что в нашей краткосрочной памяти доступно от 5 до 9 слотов. Все наши воспоминания проходят через эту стадию, и они либо отбрасываются, поскольку они не нужны надолго, либо сохраняются и передаются в хранилища долговременной памяти.

Конечно, спортсмены-памятники постоянно нарушают это правило. И ты тоже можешь.

Оперативная память

Помните, когда вы в последний раз пытались вспомнить список слов или номер телефона, но у вас не было ручки и бумаги? Это будет использовать рабочую память.

Часто используется как синоним кратковременной памяти, это форма памяти, предназначенная для выполнения определенных задач. Например, запоминание интернет-пароля, номера телефона или короткого списка покупок.

Без репетиции воспоминания в этой области сохраняются недолго. Если некоторые из этих рабочих воспоминаний полезны в течение более длительного периода времени, возможно, стоит передать их в долговременную память, которая является следующим типом памяти, к которому мы обратимся.

Долговременная память

Эта форма памяти предназначена для длительного хранения и имеет неограниченную емкость.

В книге The Brain: The Story of You (2016) Дэвид Иглман говорит, что в нашем распоряжении зеттабайт памяти. Считается, что этого достаточно для хранения примерно 30% всей информации в мире.

Хотя вам, возможно, никогда не понадобится запоминать столько, это тот тип памяти, который люди обычно хотели бы улучшить. Мы можем широко разделить виды долговременной памяти на явную память, включающую сознательное мышление, и имплицитную память, которая включает бессознательное мышление.

Явная память

Этот тип памяти вызывает определенные события и воспоминания из прошлого и включает в себя три элемента:

Декларативная память

Это напоминание фактов и фрагментов памяти, запоминание которых требует сознательного усилия. Каждый раз, когда вы готовились к тесту, вы работали над улучшением декларативной памяти и вашей способности вспоминать именно эти факты. Декларативная память делится на две взаимосвязанные части — эпизодическую и семантическую.Они часто работают в гармонии, например, при воспоминании автобиографических деталей вашей жизни.

Эпизодическая память

Как следует из этого слова, этот вид долговременной памяти относится к эпизодам — ​​коротким отрывкам из вашей жизни — и их воспоминаниям. Эти воспоминания тем сильнее, если они связаны с эмоциями, хорошими или плохими. Возможно, вы никогда не забудете, что вас укусила собака, или то, что вы чувствовали, когда подарили на Рождество блестящий велосипед. Мы также можем включить сюда автобиографическую память — мы все можем относиться к моментам нашей жизни или историям, которые мы вспоминали несколько раз, которые мы можем «заявить».Их также иногда называют эмпирическими воспоминаниями.

Семантическая память

Это совокупность знаний, хранящихся в нашем мозгу, которые помогают нам понимать и описывать мир. Например, зная, что такое собака, сколько дней в каждом месяце, зная, что море синее, трава зеленая и так далее.

Факты, которые вы можете извлечь из памяти, включают цвета таких вещей, как трава и вода. Возможно, вы даже знаете названия этих объектов на нескольких языках.

Эти типы долговременных воспоминаний отражают наши общие знания о мире — факты. Как следует из этого слова, эти воспоминания являются важными строительными блоками, которые определяют контекст и смысл нашей жизни. Они хранятся в нашем мозгу для извлечения.

Например, если вы вспоминаете день своей свадьбы (эпизодическое воспоминание), вам нужно иметь ключевые строительные блоки для истории — цвет платья невесты, тип машины, церковь, гостей, речи, погода и тд.Это иллюстрация того, как эпизодические воспоминания и семантические воспоминания часто используются вместе.

Неявная память

Другой важной категорией долговременной памяти является неявная память. Это вид памяти, который не нужно вспоминать сознательно и может влиять на мысли и поведение. Эти воспоминания становятся автоматическими после начального периода воздействия, изучения и практики. Например, были проведены исследования относительно того, насколько сильно люди ассоциируют мелодию и слова в песне.Если вы играете одну и ту же мелодию разными словами, люди часто говорят, что не знают ее. Неявная память часто заставляет мозг таким образом создавать ассоциации между двумя типами входных данных.

Процедурная память

Это часто наиболее выделяемый элемент в категории неявной памяти. Такая долговременная память связана с выполнением определенной задачи или списка задач.

Например, многие из нас научились бы ездить на велосипеде или водить машину.После первоначального обучения, затем осознанного выполнения и последующего повторения нам больше не нужно прилагать сознательные усилия для выполнения этих задач.

Езда на велосипеде сильно влияет на вашу процедурную память.

В самом деле, часто возможно выполнение другой несвязанной деятельности при выполнении такого рода задач. Например, вы можете подпевать любимой песне за рулем автомобиля.

Процедурная память обычно включает в себя знания, которые укрепляются прежде всего за счет повторения и обратной связи.Это те воспоминания, которые пытаются воспитать высококлассные спортсмены в спорте или в других областях. Гольфист не может сознательно запоминать каждое движение в своем замахе при попытке отбить мяч. Он должен практиковать движение и получать обратную связь до тех пор, пока движение не станет бессознательным и воспоминания в нем не станут неявными.

Улучшение памяти

Как мы видели, в основном есть три стадии памяти. Другой способ описать их — назвать их:

  • Кодировка
  • Хранилище
  • Извлечение

Кодирование может осуществляться через органы чувств, хранение может быть краткосрочным или долгосрочным, а извлечение включает как краткосрочную, так и долгосрочную память.См. Здесь дальнейшее обсуждение этапов запоминания.

Теперь, когда люди говорят об улучшении нашей памяти, они обычно думают об улучшении поиска. Однако мы должны относиться к улучшению памяти целостно и улучшать все три уровня.

Имея это в виду, что означает понимание типов памяти для улучшения всех этих уровней?

Сенсорный

Это сложная область для многих улучшений.Лучший совет здесь — быть более осознанным и присутствующим при использовании органов чувств.

Да, обратите внимание. Это означает, что нужно действительно вбирать в себя то, что вы видите, слышать, трогать и ощущать, и не позволять себе отвлекаться.

Чем больше ассоциаций возникает из ваших сенсорных воспоминаний, когда они входят в вашу систему памяти, тем больше вероятность того, что они будут запомнены. Если вы изначально не уделяете должного внимания, воспоминания никогда не закрепятся.

Кратковременная и рабочая память

Есть несколько простых способов улучшить кратковременную / рабочую память.Один из самых эффективных — разбиение на части. Это метод, который включает разбиение длинной строки букв или цифр на более удобные куски.

Разбиение чего-либо на более мелкие части облегчает запоминание. Возможно, вы захотите расширить эту идею, активно осознавая, что информация, которую вы постоянно фиксируете в краткосрочной памяти, может занять достойное место в вашей долгосрочной памяти — примерами здесь могут быть пароли, информация о банковском счете и номера паспортов. Стоит предпринять активные шаги по распространению такой информации, особенно если она положительно повлияет на вашу жизнь.

Долговременная память

Это тип памяти, который большинство людей хотели бы улучшить, и, как уже говорилось, он связан со способностью извлекать информацию. Вот несколько идей:

Эмоционально… но не слишком Эмоционально

Чем более эмоциональным будет воспоминание, хорошее или плохое, тем больше вероятность, что вы его запомните. Возможно, нецелесообразно искать положительные или отрицательные эмоциональные переживания, чтобы улучшить наши воспоминания, но мы можем использовать эти знания, чтобы обманом заставить наш мозг запоминать вещи, используя эмоциональные образы или слова.Этой ассоциативной технике обучают как часть создания дворцов памяти. Стоит упомянуть флэш-память, которая помогает проиллюстрировать суть дела.

Вспышка памяти включает в себя живое вспоминание ситуаций, которые обычно вызывали сильные драматические эмоции.

воспоминаний Flashbulb вызываются, когда ситуация, связанная с определенным событием, вызывает сильные эмоции. Человеку с такими воспоминаниями может казаться, что он видит очень четкую внутреннюю картину события.

Хотя человек, испытывающий воспоминания, может чувствовать, что это похоже на просмотр внутренней картины, было обнаружено, что даже эти воспоминания могут быть весьма ненадежными.Исследования, проведенные после стрельбы в JFK, составляют часть ранних работ, проделанных в этой области. Эксперт по памяти Дэвид Берглас использует термин «эффект Кеннеди», когда люди, использующие методы памяти, целенаправленно оживляют информацию, используя методы памяти.

Мнемонические устройства

Подобные устройства помогают вспоминать, предоставляя мозгу простую доступную структуру для использования. Все помнят такие вещи, как Каждый хороший мальчик заслуживает фруктов , чтобы запомнить названия музыкальных нот, которые попадают на линии на нотном стане.Они широко используются во многих областях для запоминания определенных фактов, и, естественно, вы можете изобрести свои собственные.

Цикл тестирования и репетиции

Это то, что наши учителя использовали с нами в школе, но стоит помнить. Повторное извлечение воспоминаний имеет большее влияние, чем длительные периоды учебы. Если у вас есть что-то, что вы пытаетесь сохранить в краткосрочной памяти, вам рекомендуется использовать цикл репетиций, чтобы сохранить свежие воспоминания.В течение длительного времени, с помощью репетиций и тестирования, воспоминания могут попасть в долговременную память. Если эти занятия можно превратить в игры, чтобы сделать их более увлекательными, результаты наверняка будут лучше.

Немедленная обратная связь

Немедленная обратная связь также создает лучшие долгосрочные воспоминания. При выполнении какой-либо деятельности, а это особенно относится к обучению навыку, идеально иметь немедленную обратную связь, чтобы вы могли исправить свои ошибки, а затем правильно отработать навык.Нет ничего хуже, чем помнить, как что-то делать неправильно!

Сон и здоровье

Sleep действует как очищающая система, которая снижает количество токсинов и улучшает работу мозга. Те, кто жертвует сном, вероятно, увидят накопление метаболических токсинов, таких как липкий белок бета-амилоид. Естественно, минимизация стресса, правильное питание и упражнения — все это оказывает большое влияние на мозг и его функцию памяти.

Немного кофе

Исследования показали, что определенное количество кофе может улучшить нашу умственную остроту, но слишком много имеет противоположный эффект.

Играйте в игры для мозга и получайте удовольствие

Как и в случае с мышцами тела, чем больше вы их используете, тем сильнее они становятся. Игры для мозга или все, что задействует серое вещество, могут положительно сказаться на общей производительности памяти.

Изучение мозга продолжается, и новые открытия вносят небольшие изменения в теории. Наши воспоминания невероятно мощны и обладают неограниченными возможностями. Обладая более глубоким пониманием руководства пользователя для мозга и типов памяти, хранящейся в нем, мы можем получить больше от наших воспоминаний и сопутствующего положительного влияния на нашу жизнь.

Чтобы добиться максимального эффекта, рассмотрите возможность подписки на мой комплект для улучшения бесплатной памяти. Всего за несколько дней вы сможете ощутить колоссальный рост памяти и получить от этого удовольствие.

В чем разница между долговременной, краткосрочной и рабочей памятью?

Prog Brain Res. Авторская рукопись; доступно в PMC 2009 18 марта.

Опубликован в окончательной отредактированной форме как:

PMCID: PMC2657600

NIHMSID: NIHMS84208

Нельсон Коуэн

Департамент психологических наук, Университет штата Миссури, Миссури, 18 65211, США

Нельсон Коуэн, Департамент психологических наук, Университет Миссури, 18 Макалестер Холл, Колумбия, Миссури 65211, США;

* Автор, ответственный за переписку.Тел .: +1 573-882-4232; Факс: +1 573-882-7710; E-mail: ude.iruossim@NnawoC Окончательная отредактированная версия этой статьи издателем доступна на Prog Brain Res. См. Другие статьи в PMC, в которых цитируется опубликованная статья.

Abstract

В недавней литературе существует значительная путаница в отношении трех типов памяти: долговременной, кратковременной и рабочей памяти. В этой главе предпринимается попытка уменьшить эту путаницу и даны современные оценки этих типов памяти. Долговременная и кратковременная память могут различаться двумя фундаментальными способами: только кратковременная память демонстрирует (1) временное затухание и (2) пределы емкости блока.Оба свойства кратковременной памяти все еще спорны, но текущая литература довольно обнадеживает в отношении существования как распада, так и пределов емкости. Рабочая память была задумана и определена тремя разными, слегка противоречащими друг другу способами: как краткосрочная память, применяемая к когнитивным задачам, как многокомпонентная система, которая хранит и управляет информацией в кратковременной памяти, и как использование внимания для управления краткосрочная память. Независимо от определения, есть некоторые показатели краткосрочной памяти, которые кажутся рутинными и плохо коррелируют с когнитивными способностями и другими показателями (обычно определяемыми термином «рабочая память»), которые кажутся требующими большего внимания и хорошо коррелируют. с этими способностями.Доказательства оцениваются и помещаются в теоретические рамки, изображенные в.

Ключевые слова: внимание, емкость рабочей памяти, контроль внимания, распад кратковременной памяти, фокус внимания, долговременная память, кратковременная память, рабочая память

Исторические корни основного научного вопроса

Сколько фаз в памяти? С наивной точки зрения на память, это могло быть все из одной ткани. Некоторые люди обладают хорошей способностью фиксировать в памяти факты и события, тогда как другие обладают меньшей способностью.Тем не менее, задолго до того, как появились настоящие психологические лаборатории, более тщательное наблюдение должно было показать, что существуют отдельные аспекты памяти. Можно было бы увидеть пожилого учителя, рассказывающего старые уроки так же живо, как и прежде, и все же может быть очевидно, что его способность фиксировать имена новых учеников или вспоминать, какой ученик сделал какой комментарий в продолжающемся разговоре, уменьшилась за годы.

Научное изучение памяти обычно восходит к Герману Эббингаузу (перевод 1885/1913), который исследовал собственное получение и забывание новой информации в виде серий бессмысленных слогов, проверенных в различные периоды до 31 дня.Среди многих важных наблюдений Эббингаус заметил, что у него часто было «первое мимолетное представление… серии в моменты особой концентрации» (стр. 33), но это непосредственное воспоминание не гарантирует, что серия была запомнена таким образом, чтобы позвольте его вспомнить позже. Устойчивое запоминание иногда требовало повторения ряда. Вскоре после этого Джеймс (1890) предложил различать первичную память, небольшой объем информации, удерживаемой в качестве задней границы сознательного настоящего, и вторичную память, обширный массив знаний, хранимых на протяжении всей жизни.Первичное воспоминание о Джеймсе похоже на первое мимолетное взятие Эббингауза.

Промышленная революция предъявила новые требования к тому, что Джеймс (1890) назвал первичной памятью. В 1850-х годах телеграфистам приходилось запоминать и интерпретировать быстрые серии точек и тире, передаваемых акустически. В 1876 году был изобретен телефон. Три года спустя операторы в Лоуэлле, штат Массачусетс, начали использовать телефонные номера для более чем 200 абонентов, чтобы было легче обучить заменяющих операторов, если бы четыре штатных оператора города стали жертвой бушующей эпидемии кори.Такое использование телефонных номеров, дополненных префиксом слова, конечно же, распространилось. (Телефонный номер автора в 1957 году был Уайтхолл 2–6742; номер все еще присваивается, хотя и как семизначное число.) Еще до книги Эббингауза Нифер (1878) сообщил о кривой порядкового положения, полученной среди цифр в логарифмы, которые он пытался вспомнить. Можно заметить, что бессмысленные слоги, которые Эббингауз изобрел в качестве инструмента, приобрели большую экологическую ценность в индустриальную эпоху с растущими требованиями к информации, что, возможно, подчеркивает практическую важность первичной памяти в повседневной жизни.Первичная память кажется обременительной, поскольку человека просят помнить об аспектах незнакомой ситуации, таких как имена, места, вещи и идеи, с которыми он раньше не сталкивался.

Тем не менее, субъективное переживание разницы между первичной и вторичной памятью автоматически не гарантирует, что эти типы памяти по отдельности способствуют развитию науки о запоминании. Исследователи с другой точки зрения давно надеялись, что они смогут написать единое уравнение или, по крайней мере, единый набор принципов, которые охватили бы всю память, от самой непосредственной до очень долгосрочной.МакГеоч (1932) проиллюстрировал, что забывание с течением времени было не просто вопросом неизбежного распада памяти, а скорее вопросом интерференции во время интервала сохранения; можно было найти ситуации, в которых память со временем улучшалась, а не уменьшалась. С этой точки зрения можно было бы рассматривать то, что казалось забвением из первичной памяти, как глубокий эффект вмешательства со стороны других предметов на память для любого отдельного элемента, при этом эффекты интерференции продолжаются вечно, но не полностью разрушают данную память.Эта точка зрения поддерживалась и развивалась на протяжении многих лет непрерывной линией исследователей, верящих в единство памяти, включая, среди прочего, Мелтона (1963), Бьорка и Уиттена (1974), Викельгрена (1974), Краудера (1982, 1993). ), Гленберг и Свансон (1986), Браун и др. (2000), Nairne (2002), Neath and Surprenant (2003) и Lewandowsky et al. (2004).

Описание трех видов памяти

В этой главе я оценим силу доказательств для трех типов памяти: долговременной памяти, кратковременной памяти и рабочей памяти. Долговременная память — это обширная база знаний и запись предшествующих событий, и она существует согласно всем теоретическим представлениям; Было бы трудно отрицать, что каждый нормальный человек имеет в своем распоряжении богатый, хотя и не безупречный или полный набор долговременных воспоминаний.

Кратковременная память связана с первичной памятью Джеймса (1890) и является термином, который Бродбент (1958), Аткинсон и Шиффрин (1968) использовали несколько иначе. Как Аткинсон и Шиффрин, я считаю, что это отражает способности человеческого разума, который может временно удерживать ограниченный объем информации в очень доступном состоянии.Одно различие между термином «кратковременная память» и термином «первичная память» заключается в том, что последний может считаться более ограниченным. Возможно, что не каждая временно доступная идея находится или даже находилась в сознательном осознании. Например, согласно этой концепции, если вы разговариваете с человеком с иностранным акцентом и непреднамеренно изменяете свою речь, чтобы она соответствовала акценту иностранного говорящего, на вас влияет то, что до этого момента было бессознательным (и, следовательно, неконтролируемым) аспектом вашей короткой речи. -срочная память.Можно связать кратковременную память с паттерном нейронного возбуждения, который представляет конкретную идею, и можно было бы считать, что идея находится в кратковременной памяти только тогда, когда активен паттерн возбуждения или сборка клеток (Hebb, 1949). Человек может осознавать или не осознавать идею в течение этого периода активации.

Рабочая память не полностью отличается от кратковременной памяти. Это термин, который использовали Миллер и др. (1960) для обозначения памяти, поскольку она используется для планирования и выполнения поведения.Можно полагаться на рабочую память, чтобы сохранить частичные результаты при решении арифметической задачи без бумаги, чтобы объединить предпосылки в длинном риторическом споре или испечь торт, не допустив досадной ошибки добавления одного и того же ингредиента дважды. (Ваша рабочая память была бы более загружена при чтении предыдущего предложения, если бы я сохранил фразу «один полагается на рабочую память» до конца предложения, что я сделал в моем первом черновике этого предложения; рабочая память, таким образом, влияет на хорошее письмо.Термин «рабочая память» стал намного более доминирующим в этой области после того, как Баддели и Хитч (1974) продемонстрировали, что один модуль не может учитывать все виды временной памяти. Их мышление привело к влиятельной модели (Baddeley, 1986), в которой вербально-фонологические и визуально-пространственные репрезентации проводились отдельно, а управление ими и манипулирование ими осуществлялись с помощью процессов, связанных с вниманием, называемых центральным исполнителем. В статье 1974 года у этого центрального руководителя, возможно, была своя собственная память, которая пересекала области репрезентации.К 1986 году эта общая память была исключена из модели, но она была снова добавлена ​​Баддели (2000) в форме эпизодического буфера . Это казалось необходимым для объяснения кратковременной памяти функций, которые не совпадали с другими хранилищами (особенно семантической информации в памяти), и объяснения междоменных ассоциаций в рабочей памяти, таких как сохранение связей между именами и лицами. Благодаря работе Baddeley et al. (1975) рабочая память обычно рассматривается как комбинация нескольких компонентов, работающих вместе.Некоторые даже включают в этот набор значительный вклад долговременной памяти, которая снижает нагрузку на рабочую память за счет организации и группировки информации в рабочей памяти в меньшее количество единиц (Miller, 1956; Ericsson and Kintsch, 1995). Например, буквенную серию IRSCIAFBI гораздо легче запомнить как серию сокращений для трех федеральных агентств Соединенных Штатов Америки: налоговой службы (IRS), Центрального разведывательного управления (ЦРУ) и Федерального бюро разведки США. Расследование (ФБР).Однако этот фактор не был подчеркнут в известной модели Баддели (1986).

Из моего определения ясно, что рабочая память включает в себя кратковременную память и другие механизмы обработки, которые помогают использовать кратковременную память. Это определение отличается от того, которое использовали некоторые другие исследователи (например, Engle, 2002), которые хотели бы зарезервировать термин «рабочая память» для обозначения только связанных с вниманием аспектов кратковременной памяти. Это, однако, не столько спор по существу, сколько немного сбивающее с толку несоответствие в использовании терминов.

Одна из причин использовать термин рабочая память заключается в том, что показатели рабочей памяти, как было установлено, коррелируют с интеллектуальными способностями (и особенно с подвижным интеллектом) лучше, чем показатели кратковременной памяти, и, фактически, возможно, лучше, чем показатели любых других конкретный психологический процесс (например, Данеман и Карпентер, 1980; Киллонен и Кристал, 1990; Данеман и Мерикл, 1996; Энгл и др., 1999; Конвей и др., 2005). Считалось, что это отражает использование мер, которые включают не только хранение, но и обработку, при этом предполагается, что и хранение, и обработка должны выполняться одновременно для оценки объема рабочей памяти таким образом, который связан с когнитивными способностями.Совсем недавно Engle et al. (1999) представили понятие, что и способности, и рабочая память зависят от способности контролировать внимание или применять контроль внимания к управлению как первичной, так и вторичной памятью (Unsworth and Engle, 2007). Однако необходимы дополнительные исследования того, что именно мы узнаем из высокой корреляции между рабочей памятью и интеллектуальными способностями, и этот вопрос будет обсуждаться далее после того, как будет рассмотрен более фундаментальный вопрос различия краткосрочной и долгосрочной памяти.

Между тем, может быть полезно резюмировать теоретические основы (Cowan, 1988, 1995, 1999, 2001, 2005), основанные на прошлых исследованиях. Эта структура, проиллюстрированная в, помогает учесть взаимосвязь между механизмами долгосрочной, краткосрочной и рабочей памяти и объясняет то, что я вижу как взаимосвязь между ними. В этой структуре кратковременная память получается из временно активированного подмножества информации в долговременной памяти. Это активированное подмножество может распадаться со временем, если оно не обновляется, хотя свидетельства распада в лучшем случае являются предварительными.В фокусе внимания находится подмножество активированной информации, которое, по-видимому, ограничено по емкости блока (сколько отдельных элементов может быть включено одновременно). Новые ассоциации между активированными элементами могут стать центром внимания. Теперь мы обсудим доказательства, связанные с этой структурой моделирования.

Различие между кратковременной памятью и долговременной памятью

Если есть разница между кратковременной и долговременной памятью, есть два возможных способа, которыми эти хранилища могут отличаться: продолжительность и вместимость .Разница в продолжительности означает, что предметы, находящиеся на краткосрочном хранении, со временем распадаются из-за такого хранения. Разница в емкости означает, что существует ограничение на количество предметов, которое может храниться в краткосрочном хранилище. Если есть только ограничение по емкости, количество элементов, меньшее, чем ограничение по емкости, может оставаться в краткосрочном хранилище до тех пор, пока они не будут заменены другими элементами. Оба типа ограничения спорны. Следовательно, чтобы оценить полезность концепции краткосрочного хранения, поочередно будут оцениваться пределы продолжительности и емкости.

Пределы продолжительности

Концепция кратковременной памяти, ограничиваемой распадом с течением времени, присутствовала даже в начале когнитивной психологии, например, в работе Бродбента (1958). Если бы распад был единственным принципом, влияющим на производительность в эксперименте с непосредственной памятью, возможно, его было бы легко обнаружить. Однако даже в работе Бродбента загрязняющие переменные были признаны. Чтобы оценить распад, нужно принять во внимание или преодолеть загрязняющие эффекты репетиции, длительного поиска и временной различимости, которые будут обсуждаться по отдельности вместе с доказательствами за и против распада.

Преодоление контаминации от репетиции

По мнению различных исследователей, существует процесс, с помощью которого можно представить себе, как произносятся слова в списке, не произнося их вслух, и этот процесс называется скрытой словесной репетицией. С практикой этот процесс происходит с минимумом внимания. Гуттентаг (1984) использовал второстепенное задание, чтобы показать, что репетиция списка, который нужно вспомнить, требует усилий у маленьких детей, но не у взрослых. Если в конкретной экспериментальной процедуре не наблюдается потери кратковременной памяти, можно приписать этот образец реакции репетиции.Поэтому были предприняты шаги по устранению репетиций посредством процесса, называемого артикуляционным подавлением, в котором простое высказывание, такое как слово «the», многократно произносится участником в течение части или всего задания на краткосрочную память (например, Baddeley et al. др., 1975). Все еще есть возможное возражение, что любое высказывание, используемое для подавления репетиции, к сожалению, вызывает помехи, которые могут быть истинной причиной потери памяти с течением времени, а не распада.

Эта проблема интерференции может показаться спорной в свете выводов Левандовски и др.(2004). Они представили списки писем, которые нужно было вспомнить, и различали, сколько времени должно было потребоваться участнику, чтобы вспомнить каждый элемент в списке. В некоторых условиях они добавляли артикуляционное подавление, чтобы предотвратить репетицию. Несмотря на это подавление, они не наблюдали никакой разницы в производительности, когда время между элементами в ответе варьировалось от 400 до 1600 мс (или между условиями, в которых слово «супер» произносилось один, два или три раза между последовательными элементами в ответе. ).Они не нашли свидетельств разрушения памяти.

Ограничение этого открытия, однако, состоит в том, что скрытая словесная репетиция может быть не единственным типом репетиции, который могут использовать участники. Возможно, есть виды, которым не предотвращает артикуляционное подавление. В частности, Коуэн (1992) предположил, что процесс мысленного внимания к словам или поиска по списку, требующий внимания процесс, может служить для повторной активации элементов, которые нужно вспомнить, аналогично скрытой вербальной репетиции.Ключевое отличие состоит в том, что нельзя было ожидать, что подавление артикуляций может помешать репетициям такого типа. Вместо этого, чтобы предотвратить репетиции такого типа, нужно было бы использовать задачу, требующую внимания.

Barrouillet et al. (2004, 2007) есть результаты, которые, кажется, предполагают, что существует другой, более требующий внимания тип репетиции. В них вставлены материалы между вызываемыми элементами, которые требуют выбора; это могут быть числа для чтения вслух или время реакции с множественным выбором.Было обнаружено, что они мешают удержанию в степени, соизмеримой с долей интервала между пунктами, израсходованного на отвлекающие предметы. По мере того, как количество отвлекающих элементов увеличивается, вызывается меньше элементов, которые нужно отозвать. Идея состоит в том, что, когда отвлекающая задача не требует внимания, высвободившееся внимание позволяет вспомнить основанную на внимании репетицию предметов. Когда вставленная задача более автоматическая и не требует такого внимания (например,g., задача подавления артикуляции) гораздо меньше влияние скорости этих вставленных элементов.

На основе этой логики можно представить себе версию задачи Левандовски, в которой не артикуляционное подавление, а требующие внимания вербальные стимулы помещаются между элементами в ответе, и в которой продолжительность этого заполненного времени между элементами в ответе варьируется от от суда к делу. Вербальные, требующие внимания стимулы должны препятствовать как репетициям, основанным на внимании, так и репетициям на основе артикуляции.Если есть спад, то производительность по последовательным позициям должна снизиться сильнее, когда между элементами в ответе будут помещены более длинные заполненные интервалы. К сожалению, такие результаты могут быть объяснены альтернативно как результат вмешательства отвлекающих стимулов, без необходимости вызывать затухание.

В таком случае, кажется, необходима процедура для предотвращения репетиций, основанных как на артикуляции, так и на внимании, без создания помех. Коуэн и Обушон (в печати) опробовали один тип процедуры, с помощью которой можно добиться этого.Они представили списки из семи печатных цифр, в которых время между пунктами в списке варьировалось. В дополнение к некоторым спискам заполнителей, составленных случайным образом, было четыре критических типа испытаний, в которых все шесть интервалов между цифрами были короткими (0,5 с после каждого элемента) или все длинными (2 с после каждого элемента), или состояли из трех коротких интервалов. а затем три длинных интервала или три длинных, а затем три коротких интервала. Более того, было две реплики для ответа на пост-лист. Согласно одной из подсказок, участник должен был вспомнить список с пунктами в представленном порядке, но в любом случае они хотели.Согласно другой реплике, список должен был быть отозван в то же время, в которое он был представлен. Ожидалось, что необходимость запомнить время в последнем условии ответа предотвратит репетицию любого типа. Как следствие, производительность должна снижаться в испытаниях, в которых первые три интервала ответа длинные, потому что в этих испытаниях больше времени для того, чтобы забыть большинство пунктов списка. Как и предполагалось, было существенное взаимодействие между сигналом ответа и длиной первой половины интервалов ответа.Когда участники могли свободно вспоминать задания в своем собственном темпе, результаты в короткой первой половине ( M = 0,71) были не лучше, чем в длинной первой половине ( M = 0,74). Небольшая выгода от длинного первого тайма в этой ситуации могла быть получена, потому что это позволяло отрепетировать список на ранней стадии ответа. Напротив, когда время отзыва должно было соответствовать времени представления списка, производительность была лучше с короткой первой половиной ( M = 0,70), чем с длинной первой половиной ( M =.67). Таким образом, это предполагает, что краткосрочная память может ухудшиться.

Преодоление загрязнения из-за длительного поиска

Если существует более одного типа хранилища памяти, то все еще остается проблема, какое хранилище предоставило информацию, лежащую в основе ответа. Нет никакой гарантии, что только потому, что процедура считается тестом на краткосрочное хранение, долгосрочное хранение не будет использоваться. Например, в простой задаче с диапазоном цифр представлена ​​серия цифр, которая должна быть повторена сразу после этого из памяти.Если эта серия окажется лишь немного отличной от телефонного номера участника, участник может быстро запомнить новый номер и повторить его из долговременной памяти. Теории памяти с двойным хранилищем допускают это. Хотя Бродбент (1958), Аткинсон и Шиффрин (1968) изобразили свои модели обработки информации как серию прямоугольников, представляющих различные хранилища памяти, с долговременной памятью, следующей за кратковременной памятью, эти прямоугольники не подразумевают, что память находится исключительно в одной памяти. коробка или другое; их лучше интерпретировать как относительное время первого ввода информации из стимула в одно хранилище, а затем в следующее.Остается вопрос, как определить, исходит ли реакция из кратковременной памяти.

Во и Норман (1965) разработали математическую модель для этого. Модель работала с предположением, что долговременная память имеет место для всего списка, включая плато в середине списка. Напротив, к моменту припоминания кратковременная память остается только в конце списка. Эта модель предполагает, что для любой конкретной серийной позиции в списке вероятность успешного краткосрочного хранения (S) и долгосрочного хранения (L) независимы, так что вероятность отзыва элемента равна S + L-SL. .

Несколько иное предположение состоит в том, что краткосрочные и долгосрочные магазины не являются независимыми, а используются во взаимодополняемости. Наличие кратковременной памяти элемента может позволить переместить ресурсы, необходимые для долговременного запоминания, в другое место в списке. Данные кажутся более согласующимися с этим предположением. В нескольких исследованиях списки, которые следует вспомнить, были представлены пациентам с амнезией Корсакова и нормальным участникам контрольной группы (Baddeley and Warrington, 1970; Carlesimo et al., 1995). Эти исследования показывают, что при немедленном воспроизведении показатели у пациентов с амнезией сохраняются на последних нескольких порядковых позициях в списке. Как если бы производительность в этих последовательных положениях основывалась в основном или полностью на кратковременном хранении, и у пациентов с амнезией не наблюдалось уменьшения такого рода хранения. При отсроченном воспоминании пациенты с амнезией демонстрируют дефицит во всех последовательных положениях, как и следовало ожидать, если кратковременная память на конец списка теряется в зависимости от заполненного периода задержки (Glanzer and Cunitz, 1966).

Преодоление загрязнения из-за временной различимости

Наконец, утверждалось, что потеря памяти с течением времени не обязательно является результатом распада. Напротив, это может быть вызвано временными различиями при поиске. Такая теория предполагает, что временной контекст элемента служит сигналом для извлечения этого элемента даже при свободном вызове. Предмет, отделенный во времени от всех других предметов, относительно отличен и его легко вспомнить, тогда как предмет, который относительно близок к другим предметам, вспомнить труднее, потому что он разделяет их временные сигналы для извлечения.Вскоре после того, как список представлен, самые последние элементы становятся наиболее отчетливыми во времени (во многом как отчетливость телефонного столба, которого вы практически касаетесь, по сравнению с столбами, идущими дальше по дороге). По прошествии интервала хранения относительная различимость самых последних элементов уменьшается (так же, как если бы они стояли далеко от последнего полюса в серии).

Хотя есть данные, которые можно интерпретировать в соответствии с различимостью, есть также то, что выглядит как диссоциация между эффектами различимости и подлинным эффектом кратковременной памяти.Это можно увидеть, например, в классической процедуре Петерсона и Петерсона (1959), в которой буквенные триграммы следует вызывать сразу или только после отвлекающей задачи, считая в обратном порядке от начального числа на три в течение периода до 18 с. Петерсон и Петерсон обнаружили серьезную потерю памяти для буквенной триграммы при увеличении заполненной задержки. Однако впоследствии скептики утверждали, что потеря памяти произошла из-за того, что временная различимость текущей буквенной триграммы уменьшалась по мере увеличения заполненной задержки.В частности, было сказано, что этот эффект задержки возникает из-за увеличения задержек между тестами из-за упреждающих помех от предыдущих испытаний. В первых нескольких испытаниях задержка не имеет значения (Keppel and Underwood, 1962), и никакого вредного воздействия задержки не наблюдается, если задержки в 5, 10, 15 и 20 с тестируются в отдельных пробных блоках (Turvey et al., 1970; Грин, 1996).

Тем не менее, при более коротких интервалах испытаний может наблюдаться настоящий эффект распада. Баддели и Скотт (1971) установили трейлер в торговом центре, чтобы они могли протестировать большое количество участников для каждого испытания, чтобы избежать упреждающего вмешательства.Они обнаружили эффект задержки теста в течение первых 5 с, но не при более длительных задержках. Тем не менее, кажется, что концепция распада еще не имеет прочной основы и требует дальнейшего изучения. Возможно, что распад на самом деле отражает не постепенное ухудшение качества записи кратковременной памяти, а внезапный коллапс в точке, которая меняется от испытания к испытанию. С контролем временной различимости Cowan et al. (1997a) обнаружили, что может быть внезапный коллапс в представлении памяти для тона с задержками от 5 до 10 с.

Пределы емкости блоков

В истории когнитивной психологии концепция пределов емкости поднималась несколько раз. Миллер (1956), как известно, обсуждал «магическое число семь плюс-минус два» как константу в краткосрочной обработке, включая отзыв списка, абсолютное суждение и эксперименты с численной оценкой. Однако его автобиографическое эссе (Miller, 1989) показывает, что он никогда не относился серьезно к числу семь; это был риторический прием, который он использовал, чтобы связать воедино не связанные друг с другом направления своего исследования для выступления.Хотя верно, что объем памяти у взрослых составляет примерно семь элементов, нет гарантии, что каждый элемент является отдельным объектом. Возможно, наиболее важным моментом статьи Миллера (1956) было то, что несколько элементов можно объединить в более крупную значимую единицу. Более поздние исследования показали, что предел мощности, как правило, составляет всего три или четыре единицы (Broadbent, 1975; Cowan, 2001). Этот вывод был основан на попытке принять во внимание стратегии, которые часто повышают эффективность использования ограниченной емкости или позволяют хранить дополнительную информацию отдельно от этой ограниченной емкости.Чтобы понять эти методы обсуждения пределов емкости, я еще раз упомяну три типа загрязнения. Это происходит из-за разбивки на части и использования долговременной памяти, из-за репетиций и из-за типов хранения без ограничений по емкости.

Преодоление загрязнения от фрагментов и использование долговременной памяти

Реакция участника на задачу немедленной памяти зависит от того, как информация, которую нужно вызвать, сгруппирована для формирования фрагментов из нескольких элементов (Miller, 1956). Поскольку обычно неясно, какие фрагменты использовались при отзыве, неясно, сколько фрагментов можно сохранить и действительно ли это количество фиксировано.Бродбент (Broadbent, 1975) предложил некоторые ситуации, в которых формирование блока из нескольких элементов не было фактором, и предположил на основе результатов таких процедур, что истинный предел емкости составляет три элемента (каждый из которых служит блоком из одного элемента). Например, хотя объем памяти часто составляет около семи элементов, ошибки делаются со списками из семи элементов, а предел безошибочности обычно составляет три элемента. Когда люди должны вспомнить элементы из категории долговременной памяти, например, штаты США, они делают это рывками, в среднем около трех элементов.Это как если бы ведро кратковременной памяти наполнялось из колодца долговременной памяти и должно быть освобождено, прежде чем оно будет заполнено заново. Коуэн (2001) отметил другие подобные ситуации, в которых невозможно сформировать блоки из нескольких пунктов. Например, в рабочем диапазоне памяти длинный список элементов представлен с непредсказуемой конечной точкой, что делает невозможным группирование. Когда список заканчивается, участник должен вспомнить определенное количество пунктов из конца списка. Обычно люди могут вспомнить три или четыре пункта из конца списка, хотя точное количество зависит от требований задачи (Bunting et al., 2006). Индивидуумы различаются по способностям, которые варьируются от двух до шести пунктов у взрослых (и меньше у детей), и индивидуальный предел способностей является сильным коррелятом когнитивных способностей.

Другой способ учесть роль формирования фрагментов из нескольких элементов — настроить задачу таким образом, чтобы можно было наблюдать за фрагментами. Талвинг и Паткау (1962) изучали свободное запоминание списков слов с различными уровнями структуры, от случайных слов до хорошо сформированных английских предложений, с несколькими различными уровнями согласованности между ними.Фрагмент был определен как серия слов, воспроизводимых участником в том же порядке, в котором они были представлены. Было подсчитано, что при всех условиях участники запоминали в среднем от четырех до шести фрагментов. Cowan et al. (2004) попытались усовершенствовать этот метод, протестировав последовательное запоминание списков из восьми слов, которые состояли из четырех пар слов, которые ранее были связаны с различными уровнями обучения (0, 1, 2 или 4 предыдущих пары слово-слово ). Каждое слово, используемое в списке, было представлено равное количество раз (четыре, за исключением неисследованных контрольных условий), но различалось, сколько из этих представлений было в виде одиночных и сколько было в виде последовательной пары.Количество парных предшествующих экспозиций оставалось постоянным для четырех пар в списке. Математическая модель использовалась для оценки доли вызванных пар, которые можно отнести к усвоенной ассоциации (то есть к фрагменту из двух слов), в отличие от раздельного вспоминания двух слов в паре. Эта модель предполагала, что предел емкости составлял около 3,5 фрагментов в каждом условии обучения, но что отношение фрагментов из двух слов к фрагментам из одного слова увеличивалось в зависимости от количества предыдущих воздействий на пары в списке.

Преодоление загрязнения от репетиции

Вопрос репетиции не полностью отделен от вопроса формирования фрагментов. В традиционной концепции репетиции (например, Baddeley, 1986) можно представить, что элементы скрыто артикулируются в представленном порядке в равномерном темпе. Однако есть еще одна возможность: репетиция включает в себя использование артикуляционных процессов, чтобы разбить предметы на группы. Фактически, Cowan et al. (2006a) спросили участников эксперимента с размахом цифр, как они выполняли задание, и, безусловно, наиболее распространенным ответом среди взрослых было то, что они сгруппировали элементы; участники редко упоминали, что говорили сами себе.Тем не менее, очевидно, что подавление репетиции влияет на производительность.

Предположительно, ситуации, в которых задания невозможно отрепетировать, по большей части аналогичны ситуациям, в которых задания не могут быть сгруппированы. Например, Cowan et al. (2005) полагались на текущую процедуру запоминания, в которой элементы представлялись с быстрой скоростью 4 раза в секунду. При такой скорости репетировать предметы в том виде, в каком они представлены, невозможно. Вместо этого задача, вероятно, решается путем сохранения пассивного хранилища (сенсорной или фонологической памяти) и последующего переноса последних нескольких элементов из этого хранилища в хранилище, более ориентированное на внимание, во время отзыва.На самом деле, при высокой скорости представления в беговом диапазоне инструкции по репетиции предметов вредны, а не полезны для выступления (Hockey, 1973). Другой пример — память для списков, которые игнорировались во время их представления (Cowan et al., 1999). В этих случаях предел вместимости близок к трем или четырем пунктам, предложенным Бродбентом (1975) и Коуэном (2001).

Вполне возможно, что существует механизм краткосрочного хранения на основе речи, который в целом не зависит от механизма на основе фрагментов.С точки зрения популярной модели Баддели (2000), первая представляет собой фонологическую петлю, а вторая — эпизодический буфер. В терминах Коуэна (1988, 1995, 1999, 2005) первая является частью активированной памяти, которая может иметь ограничение по времени из-за распада, а вторая является центром внимания, который, как предполагается, имеет предел емкости блока. .

Чен и Коуэн (2005) показали, что ограничение по времени и предел емкости блока в краткосрочной памяти разделены. Они повторили процедуру Cowan et al.(2004), в которых пары слов иногда предъявлялись на тренировке, предшествующей тесту на запоминание списка. Они объединили списки, составленные из пар, как в этом исследовании. Однако теперь использовались как бесплатные, так и серийные задачи отзыва, а длина списка варьировалась. Для длинных списков и бесплатного отзыва ограничение объема блока определяло отзыв. Например, были вызваны списки из шести хорошо выученных пар, а также списки из шести непарных синглтонов (т. Е. Были вызваны с одинаковыми пропорциями правильных слов). Для более коротких списков и серийных отзывов с жесткой оценкой, отзыв регулируется ограничением времени.Например, списки из четырех хорошо усвоенных пар не были вызваны почти так же хорошо, как списки из четырех непарных синглтонов, а только так же, как списки восьми непарных синглтонов. Для промежуточных условий казалось, что пределы емкости блока и ограничения по времени действуют вместе, чтобы управлять отзывом. Возможно, механизм с ограниченным объемом хранит предметы, а механизм репетиции сохраняет некоторую память последовательного порядка для этих удерживаемых предметов. Пока не ясно, как эти ограничения работают вместе.

Преодоление загрязнения из-за типов хранилищ без ограничения емкости

Трудно продемонстрировать истинный предел емкости, связанный с вниманием, если, как я полагаю, существуют другие типы механизмов краткосрочной памяти, которые усложняют результаты.Общая емкость должна включать в себя блоки информации всех видов: например, информацию, полученную как от акустических, так и от визуальных стимулов, а также от вербальных и невербальных стимулов. В этом случае должно быть перекрестное взаимодействие между одним типом загрузки памяти и другим. Однако в литературе часто указывается, что между схожими типами меморандумов, например, двумя визуальными массивами объектов или двумя акустически представленными списками слов, существует гораздо больше взаимовлияния, чем между двумя разнородными типами, такими как один визуальный массив и один вербальный список. .Cocchini et al. (2002) предположили, что разнородные списки практически не интерферируют. Если это так, то это может служить аргументом против наличия общего междоменного хранилища краткосрочной памяти.

Мори и Коуэн (2004, 2005) подвергли этот вывод сомнению. Они представили визуальный набор цветных пятен для сравнения со вторым набором, который соответствовал первому или отличался от него цветом одного пятна. Перед первым массивом или сразу после него участники иногда слышали список цифр, которые затем должны были быть произнесены между двумя массивами.В условиях низкой загрузки список представлял собой их собственный семизначный телефонный номер, тогда как в условиях высокой загрузки это был случайный семизначный номер. Только последнее условие мешало производительности сравнения массивов, и то только в том случае, если список должен был читаться вслух между массивами. Это говорит о том, что получение семи случайных цифр способом, который также задействует репетиционные процессы, основывается на каком-то механизме краткосрочной памяти, который также необходим для визуальных массивов. Этот общий механизм может оказаться в центре внимания с его ограниченными возможностями.Очевидно, однако, что если список велся молча, а не читался вслух, это тихое обслуживание происходило без особого использования общего механизма хранения, основанного на внимании, поэтому производительность визуального массива не сильно пострадала.

Типы кратковременной памяти, вклад которой в напоминание может скрывать предел емкости, могут включать любые типы активированной памяти, выходящие за рамки фокуса внимания. В структуре моделирования, изображенной на, это может включать в себя функции сенсорной памяти, а также семантические функции.Сперлинг (1960) классно проиллюстрировал разницу между неограниченной сенсорной памятью и категориальной памятью с ограниченными возможностями. Если за массивом символов следует частичная реплика отчета вскоре после массива, можно было бы вызвать большинство символов в указанной строке. Если сигнал был задержан примерно на 1 с, большая часть сенсорной информации распадалась, и производительность была ограничена примерно четырьмя символами, независимо от размера массива. Основываясь на этом исследовании, ограничение в четыре символа можно рассматривать либо как ограничение емкости кратковременной памяти, либо как ограничение скорости, с которой информация может быть перенесена из сенсорной памяти в категориальную форму до того, как она распадется.Однако Darwin et al. (1972) провели аналогичный слуховой эксперимент и обнаружили предел в четыре пункта, хотя наблюдаемый период спада сенсорной памяти составлял около 4 секунд. Учитывая разительные различия между Сперлингом и Дарвином и соавт. в период времени, доступный для передачи информации в категориальную форму, общий предел из четырех элементов лучше всего рассматривать как ограничение емкости, а не как ограничение скорости.

Saults and Cowan (2007) протестировали эту концептуальную основу в серии экспериментов, в которых массивы были представлены в двух модальностях одновременно или, в другой процедуре, один за другим.Визуальный набор цветных пятен был дополнен набором произносимых цифр в четырех отдельных громкоговорителях, каждый из которых последовательно привязан к разному голосу для облегчения восприятия. В некоторых испытаниях участники знали, что они несут ответственность за обе модели одновременно, тогда как в других испытаниях участники знали, что они несут ответственность только за визуальные или только за акустические стимулы. Они получили массив зондов, который был таким же, как и предыдущий массив (или такой же, как одна модальность в этом предыдущем массиве), или отличался от предыдущего массива идентичностью одного стимула.Задача заключалась в том, чтобы определить, было ли изменение. Использование кросс-модальности хранилища с ограниченным объемом позволяет прогнозировать определенный образец результатов. Он предсказывает, что производительность в любой модальности должна снизиться в условиях двойной модальности по сравнению с унимодальными условиями из-за нагрузки на хранилище кросс-модальности. Так получились результаты. Более того, если кросс-модальность, хранилище с ограниченной вместимостью было единственным используемым типом хранилища, тогда сумма зрительных и слуховых возможностей в состоянии двойной модальности не должна быть больше, чем большая из двух унимодальных возможностей (что случилось с быть зрительной способностью).Причина в том, что магазин ограниченной емкости будет содержать одинаковое количество единиц независимо от того, были ли они все из одной модальности или из двух вместе взятых. Это предсказание подтвердилось, но только в том случае, если в обеих модальностях сразу после массива, который нужно запомнить, существовала пост-перцептивная маска. Пост-перцептивная маска включала в себя разноцветное пятно в каждом местоположении визуального объекта и звук, состоящий из всех возможных цифр, наложенных из каждого громкоговорителя. Он был представлен достаточно долго после массивов, чтобы их можно было вспомнить, чтобы их восприятие было полным (например,г., через 1 с; ср. Vogel et al., 2006). Предположительно, маска была способна перезаписывать различные типы сенсорных функций в активированной памяти, оставляя после себя только более общую, категориальную информацию, присутствующую в фокусе внимания, которая предположительно защищена от маскирующего вмешательства процессом внимания. Снова было показано, что предел фокуса внимания составляет от трех до четырех пунктов для одномодальных зрительных или бимодальных стимулов.

Даже без использования маскирующих стимулов можно найти фазу процесса кратковременной памяти, которая является общей для разных областей.Cowan и Morey (2007) представили для вызова два набора стимулов (или, в контрольных условиях, только один набор). Два набора стимулов могут включать в себя два разговорных списка цифр, два пространственных массива цветных пятен или по одному каждого в любом порядке. После этой презентации сигнал показал, что участник будет нести ответственность только за первый массив, только за второй массив или за оба массива. До зондирования следовало три секунды. Эффект от загрузки памяти можно сравнить двумя способами. Эффективность в тех испытаниях, в которых были представлены два набора стимулов и оба были запрошены для удержания, можно было сравнить либо с испытаниями, в которых был представлен только один набор, либо с испытаниями, в которых были представлены оба набора стимулов, но позже указывался сигнал. что нужно было сохранить только один набор.Часть рабочей памяти, предшествующая сигналу, показывала специфичные для модальности эффекты двойной задачи: кодирование набора стимулов одного типа было более вредным из-за кодирования другого набора, если оба набора были в одной и той же модальности. Однако сохранение информации после сигнала показало эффекты двойной задачи, не зависящие от модальности. Когда были представлены два набора, сохранение их обоих было вредным по сравнению с сохранением только одного набора (как указано в сигнале удержания после стимула, чтобы сохранить один набор по сравнению с обоими наборами), и этот эффект двойной задачи был одинаковым по величине независимо от того, наборы были в одинаковых или разных модальностях.Таким образом, после первоначального кодирования хранение рабочей памяти в течение нескольких секунд может происходить абстрактно, в фокусе внимания.

Другое свидетельство в пользу отдельного краткосрочного хранения

Наконец, есть другие свидетельства, которые напрямую не подтверждают ни временное затухание, ни ограничение емкости, но подразумевают, что существует тот или иной из этих ограничений. Бьорк и Уиттен (1974) и Ценг (1973) выдвинули аргументы временной различимости на основе так называемого непрерывного отзыва списка отвлекающих факторов, при котором эффект новизны сохраняется даже тогда, когда за списком следует заполненная отвлекающими факторами задержка перед отзывом.Заполненная задержка должна была разрушить кратковременную память, но эффект новизны все равно возникает, при условии, что элементы в списке также разделены задержками, заполненными отвлекающими факторами, чтобы усилить их отличия друг от друга. В пользу краткосрочного запоминания, однако, другие исследования показали диссоциацию между тем, что обнаруживается при обычном немедленном вспоминании и постоянном отвлекающем воспоминании (например, эффекты длины слова, обращенные вспять при постоянном отвлекающем воспоминании: Cowan et al., 1997b; проактивное вмешательство в самые последние позиции в списках, которые постоянно вспоминаются только дистракторами: Craik & Birtwistle, 1971; Davelaar et al., 2005).

Есть также дополнительные данные нейровизуализации для кратковременного хранения. Talmi et al. (2005) обнаружили, что распознавание более ранних частей списка, но не нескольких последних элементов, активировало области в системе гиппокампа, что обычно связано с извлечением долговременной памяти. Это согласуется с упомянутым ранее выводом о том, что память для нескольких последних пунктов списка сохраняется при амнезии Корсакова (Baddeley and Warrington, 1970; Carlesimo et al., 1995). В этих исследованиях часть эффекта новизны, основанная на кратковременной памяти, может отражать короткий промежуток времени между презентацией и воспроизведением нескольких последних элементов или может отражать отсутствие интерференции между презентацией и воспроизведением нескольких последних элементов. .Таким образом, мы можем сказать, что кратковременная память существует, но часто без особой ясности относительно того, является ли ограничение ограничением по времени или пределом емкости блока.

Различие между кратковременной памятью и рабочей памятью

Различие между кратковременной памятью и рабочей памятью затуманено некоторой путаницей, но это в значительной степени результат того, что разные исследователи использовали разные определения. Miller et al. (1960) использовали термин «рабочая память» для обозначения временной памяти с функциональной точки зрения, поэтому с их точки зрения нет четкого различия между кратковременной и рабочей памятью.Баддели и Хитч (1974) вполне соответствовали этому определению, но наложили некоторые описания на термины, которые их отличали. Они рассматривали кратковременную память как единое место хранения, как это описано, например, Аткинсоном и Шиффрином (1968). Когда они поняли, что доказательства на самом деле соответствуют многокомпонентной системе, которую нельзя свести к унитарному краткосрочному хранилищу, они использовали термин рабочая память для описания всей системы. Коуэн (1988) придерживался многокомпонентного взгляда, как Бэдделли и Хитч, но не уделял точного внимания их компонентам; вместо этого, основными подразделениями рабочей памяти были названы компоненты краткосрочного хранения (активированная память вместе с фокусом внимания внутри нее, как показано на рисунке) и центральные исполнительные процессы, которые манипулируют хранимой информацией.По мнению Коуэна, фонологическая петля и зрительно-пространственный блокнот Баддели (1986) могут рассматриваться как всего лишь два из многих аспектов активированной памяти, которые подвержены помехам в степени, которая зависит от сходства между характеристиками активированных и мешающих источников информации. Эпизодический буфер Баддели (2000), возможно, совпадает с информацией, хранящейся в фокусе внимания Коуэна, или, по крайней мере, представляет собой очень похожую концепцию.

Произошел некоторый сдвиг в определении или описании рабочей памяти, а также сдвиг в объяснении того, почему новые задачи с оперативной памятью коррелируют с интеллектом и мерами способностей намного выше, чем простые, традиционные задачи краткосрочной памяти. например, серийный отзыв.Данеман и Карпентер (1980) предположили, что критически важно использовать задачи рабочей памяти, которые включают в себя как компоненты хранения, так и компоненты обработки, чтобы задействовать все части рабочей памяти, как описано, например, Баддели и Хитчем (1974). . Вместо этого Энгл и др. (1999) и Kane et al. (2001) предположили, что критичным является то, является ли задача рабочей памяти сложной с точки зрения контроля внимания. Например, Kane et al. обнаружили, что задачи по хранению и обработке рабочей памяти хорошо коррелируют со способностью подавлять естественную тенденцию смотреть на внезапно появляющийся стимул и вместо этого смотреть в другую сторону, задача антисаккада.Аналогичным образом Conway et al. (2001) обнаружили, что люди, получившие высокие баллы по тестам на хранение и обработку рабочей памяти, замечают свои имена в канале, который следует игнорировать при дихотическом слушании, гораздо чаще, чем — менее , чем люди с малым интервалом; Люди с большим размахом, по-видимому, лучше способны сделать выполнение своей основной задачи менее уязвимым для отвлечения внимания, но это происходит за счет того, что они немного не обращают внимания на несущественные аспекты своего окружения. В ответ на такое исследование Энгл и его коллеги иногда использовали термин рабочая память для обозначения только процессов, связанных с контролем внимания.Таким образом, их определение рабочей памяти, кажется, расходится с предыдущими определениями, но это новое определение допускает простое утверждение, что рабочая память сильно коррелирует со способностями, тогда как кратковременная память (переопределенная, чтобы включать только аспекты памяти, не связанные с вниманием. хранение) не так сильно коррелирует со способностями.

Cowan et al. (2006b), придерживаясь более традиционного определения рабочей памяти, сделали утверждение о рабочей памяти, подобное утверждению Энгла и его коллег, но немного более сложное.Они предположили, на основе некоторых данных о развитии и корреляции, что множественные функции внимания имеют отношение к индивидуальным различиям в способностях. Контроль внимания имеет значение, но есть независимый вклад от количества элементов, которые можно удерживать во внимании, или его объема. Согласно этой точке зрения, что может быть необходимо для того, чтобы процедура рабочей памяти хорошо коррелировала с когнитивными способностями, так это то, что задача должна предотвращать скрытые словесные репетиции, так что участник должен полагаться на более требовательную к вниманию обработку и / или память для выполнения задачи. .Cowan et al. (2005) обнаружили, что задача может быть намного проще, чем процедуры хранения и обработки. Например, в версии текущего теста объема памяти цифры отображаются очень быстро, и последовательность останавливается в непредсказуемой точке, после чего участник должен вызвать как можно больше элементов из конца списка. Репетиция невозможна, и, когда список заканчивается, информация, по-видимому, должна быть извлечена из активированных сенсорных или фонологических функций в центр внимания.Этот тип задач коррелировал со способностями, как и некоторые другие меры объема внимания (Cowan et al., 2005, 2006b). У детей, слишком маленьких для того, чтобы использовать скрытую словесную репетицию (в отличие от детей старшего возраста и взрослых), даже простая задача по размаху цифр служила отличным коррелятом со способностями.

Другое исследование подтверждает эту идею о том, что тест на рабочую память будет хорошо коррелировать с когнитивными способностями в той степени, в которой он требует, чтобы внимание использовалось для хранения и / или обработки.Гавенс и Барруйе (2004) провели исследование развития, в котором они контролировали сложность и продолжительность задачи обработки, которая возникала между элементами, которые нужно было вспомнить. По-прежнему существовала разница в продолжительности развития, которую они приписывали развитию основных способностей, что могло отражать увеличение объема внимания в процессе развития (см. Cowan et al., 2005). Lépine et al. (2005) показали, что для того, чтобы связанная задача типа хранения и обработки хорошо коррелировала со способностями, было то, чтобы компонент обработки задачи (в данном случае чтение букв вслух) выполнялся достаточно быстро, чтобы предотвратить различные типы репетиция, чтобы прокрасться между ними (см. также Conlin et al., 2005).

В нескольких статьях были сопоставлены хранение и обработка (возможно, объем или контроль внимания?), Чтобы понять, что более важно для учета индивидуальных различий. Vogel et al. (2005) использовали задачу визуального массива, модифицированную для использования с компонентом связанных с событием потенциалов, который указывает хранение в визуальной рабочей памяти, называемой контралатеральной задерживающей активностью (CDA). Было обнаружено, что это действие зависит не только от количества соответствующих объектов на дисплее (например,g., красные полосы под разными углами, которые нужно запомнить), но иногда также количество нерелевантных объектов, которые следует игнорировать (например, синие полосы). Для людей с большим размахом CDA для двух релевантных объектов оказался одинаковым независимо от того, присутствовали ли также два нерелевантных объекта на дисплее. Однако для людей с малым охватом CDA для двух релевантных объектов в сочетании с двумя нерелевантными объектами был аналогичен CDA для дисплеев только с четырьмя релевантными объектами, как если бы нерелевантные объекты нельзя было исключить из рабочей памяти.Одним из ограничений исследования является то, что разделение участников на высокий и низкий диапазон также основывалось на CDA, и задача, используемая для измерения CDA, неизбежно требовала выборочного внимания (к половине дисплея) в каждом испытании, независимо от того, в него входили предметы неактуального цвета.

Gold et al. (2006) исследовали аналогичные проблемы в поведенческом дизайне и проверяли разницу между пациентами с шизофренией и нормальными участниками контрольной группы. Каждое испытание начиналось с того, что нужно было уделить внимание одной части демонстрации за счет другой (например,g., полосы одного актуального цвета, но не другого, нерелевантного цвета). Отображение датчика представляло собой набор, который соответствовал значению в большинстве испытаний (в некоторых экспериментах, 75%), тогда как иногда отображение датчика было набором, для которого не указывалось. Это позволило по отдельности измерить контроль внимания (преимущество элементов с указанием по сравнению с элементами без запроса) и объем оперативной памяти (среднее количество элементов, вызванных из каждого массива, сложение по наборам с указанием и без очереди). В отличие от первоначальных ожиданий, очевидный результат заключался в том, что разница между группами заключалась в способности, а не в контроле внимания.Было бы интересно узнать, можно ли получить один и тот же тип результата для нормальных людей с высоким или низким размахом, или же это сравнение вместо этого покажет разницу в контроле внимания между этими группами, как Vogel et al. (2005) должен предсказывать. Friedman et al. (2006) обнаружили, что не все центральные исполнительные функции коррелируют со способностями; обновление рабочей памяти сделало, но торможение и переключение внимания — нет. С другой стороны, напомним, что Cowan et al. (2006b) обнаружили, что задача контроля внимания связана со способностями.

В общем, вопрос о том, различаются ли кратковременная память и рабочая память, может быть вопросом семантики. Есть очевидные различия между простыми задачами последовательного воспроизведения, которые не очень хорошо коррелируют с тестами на способности у взрослых, и другими задачами, требующими памяти и обработки или памяти без возможности репетиции, которые гораздо лучше коррелируют со способностями. Использовать ли термин «рабочая память» для последнего набора задач или зарезервировать этот термин для всей системы сохранения и управления кратковременной памятью — дело вкуса.Более важный и существенный вопрос может заключаться в том, почему одни задачи гораздо лучше коррелируют со способностями, чем другие.

Заключение

Различие между долговременной и кратковременной памятью зависит от того, можно ли продемонстрировать наличие свойств, специфичных для кратковременной памяти; основные кандидаты включают временное затухание и ограничение емкости блока. Вопрос о распаде по-прежнему остается открытым для обсуждения, в то время как ограничение емкости блоков данных получает все большую поддержку. Эти ограничения обсуждались в рамках, показанных в.

Различие между кратковременной памятью и рабочей памятью зависит от принятого определения. Тем не менее, главный вопрос заключается в том, почему одни тесты памяти на короткий срок служат одними из лучших коррелятов когнитивных способностей, а другие — нет. Ответ, кажется, указывает на важность системы внимания, используемой как для обработки, так и для хранения. Эффективность этой системы и ее использование в рабочей памяти, по-видимому, существенно различаются у разных людей (например,г., Conway et al., 2002; Кейн и др., 2004; Cowan et al., 2005, 2006b), а также улучшается по мере развития в детстве (Cowan et al., 2005, 2006b) и снижается в старости (Naveh-Benjamin et al., 2007; Stoltzfus et al., 1996; Cowan et al., 2006c).

Благодарность

Эта работа была завершена при содействии NIH Grant R01 HD-21338.

Ссылки

  • Аткинсон Р.К., Шиффрин Р.М. Память человека: предлагаемая система и процессы управления ею. В: Спенс К.В., Спенс Дж. Т., редакторы.Психология обучения и мотивации: достижения в области исследований и теории. Vol. 2. Нью-Йорк: Academic Press; 1968. С. 89–195. [Google Scholar]
  • Баддели А. Эпизодический буфер: новый компонент рабочей памяти? Trends Cogn. Sci. 2000. 4: 417–423. [PubMed] [Google Scholar]
  • Baddeley AD. Oxford Psychology Series No. 11. Оксфорд: Clarendon Press; 1986. Рабочая память. [Google Scholar]
  • Баддели А.Д., Хитч Г. Рабочая память. В: Бауэр Г.Х., редактор. Психология обучения и мотивации.Vol. 8. Нью-Йорк: Academic Press; 1974. С. 47–89. [Google Scholar]
  • Баддели А.Д., Скотт Д. Кратковременное забывание при отсутствии упреждающего торможения. Q. J. Exp. Psychol. 1971; 23: 275–283. [Google Scholar]
  • Баддели А.Д., Томсон Н., Бьюкенен М. Длина слова и структура кратковременной памяти. J. Словесное обучение. Вербальное поведение. 1975. 14: 575–589. [Google Scholar]
  • Baddeley AD, Warrington EK. Амнезия и различие между долговременной и кратковременной памятью. J. Словесное обучение.Вербальное поведение. 1970; 9: 176–189. [Google Scholar]
  • Барруйе П., Бернардин С., Камос В. Временные ограничения и совместное использование ресурсов в пределах рабочей памяти взрослых. J. Exp. Psychol .: Gen. 2004; 133: 83–100. [PubMed] [Google Scholar]
  • Барруйе П., Бернардин С., Портрат С., Вергаув Э., Камос В. Время и когнитивная нагрузка на рабочую память. J. Exp. Psychol. Учить. Mem. Cogn. 2007; 33: 570–585. [PubMed] [Google Scholar]
  • Бьорк Р.А., Уиттен В.Б. Процессы поиска, чувствительные к давности, при длительном бесплатном отзыве.Cogn. Psychol. 1974. 6: 173–189. [Google Scholar]
  • Broadbent DE. Восприятие и общение. Нью-Йорк: Pergamon Press; 1958. [Google Scholar]
  • Broadbent DE. Магическое число семь через пятнадцать лет. В: Кеннеди А., Уилкс А., редакторы. Исследования долговременной памяти. Оксфорд, Англия: Wiley; 1975. С. 3–18. [Google Scholar]
  • Brown GDA, Preece T, Hulme C. Память на основе осциллятора для последовательного заказа. Psychol. Rev.2000; 107: 127–181. [PubMed] [Google Scholar]
  • Бантинг М.Ф., Коуэн Н., Саултс Дж. С..Как работает рабочий диапазон памяти? Q. J. Exp. Psychol. 2006; 59: 1691–1700. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Карлезимо Г.А., Саббадини М., Фадда Л., Кальтаджироне С. Различные компоненты в словесном забвении чистой амнезии, дегенеративного слабоумия и здоровых субъектов. Cortex. 1995; 31: 735–745. [PubMed] [Google Scholar]
  • Чен З, Коуэн Н. Пределы чанка и ограничения длины при немедленном отзыве: согласование. J. Exp. Psychol. Учить. Mem. Cogn. 2005; 31: 1235–1249. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Cocchini G, Logie RH, Della Sala S, MacPherson SE, Baddeley AD.Одновременное выполнение двух задач памяти: свидетельство для систем рабочей памяти, специфичных для предметной области. Mem. Cogn. 2002; 30: 1086–1095. [PubMed] [Google Scholar]
  • Конлин Дж. А., Gathercole SE, Адамс Дж. У. Детская рабочая память: исследование ограничений производительности при выполнении сложных задач. J. Exp. Детская психол. 2005; 90: 303–317. [PubMed] [Google Scholar]
  • Conway ARA, Cowan N, Bunting MF. Вернемся к феномену коктейльной вечеринки: важность объема рабочей памяти. Психон. Бык.Ред. 2001; 8: 331–335. [PubMed] [Google Scholar]
  • Conway ARA, Cowan N, Bunting MF, Therriault DJ, Minkoff SRB. Скрытый переменный анализ объема рабочей памяти, объема краткосрочной памяти, скорости обработки и общего гибкого интеллекта. Интеллект. 2002. 30: 163–183. [Google Scholar]
  • Conway ARA, Kane MJ, Bunting MF, Hambrick DZ, Wilhelm O, Engle RW. Задачи по объему рабочей памяти: методический обзор и руководство пользователя. Психон. Бык. Ред. 2005; 12: 769–786. [PubMed] [Google Scholar]
  • Cowan N.Развитие представлений о хранении в памяти, избирательном внимании и их взаимных ограничениях в системе обработки информации человеком. Psychol. Бык. 1988. 104: 163–191. [PubMed] [Google Scholar]
  • Коуэн Н. Объем вербальной памяти и время речевого отзыва. J. Mem. Lang. 1992; 31: 668–684. [Google Scholar]
  • Cowan N. Oxford Psychology Series No. 26. Нью-Йорк: Oxford University Press; 1995. Внимание и память: интегрированные рамки. [Google Scholar]
  • Коуэн Н.Модель встроенных процессов рабочей памяти. В: Мияке А., Шах П., редакторы. Модели рабочей памяти: механизмы активного обслуживания и исполнительного контроля. Кембридж, Великобритания: Издательство Кембриджского университета; 1999. С. 62–101. [Google Scholar]
  • Коуэн Н. Магическое число 4 в краткосрочной памяти: переосмысление способности умственной памяти. Behav. Brain Sci. 2001. 24: 87–185. [PubMed] [Google Scholar]
  • Коуэн Н. Объем оперативной памяти. Хоув, Восточный Суссекс, Великобритания: Psychology Press; 2005 г.[Google Scholar]
  • Cowan N, Aubuchon AM. Психон. Бык. Rev. Кратковременная потеря памяти с течением времени без вмешательства ретроактивных стимулов. (в печати) [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Cowan N, Chen Z, Rouder JN. Постоянная способность к немедленному выполнению задачи последовательного отзыва: логическое продолжение книги Миллера (1956) Psychol. Sci. 2004; 15: 634–640. [PubMed] [Google Scholar]
  • Cowan N, Elliott EM, Saults JS, Morey CC, Mattox S, Hismjatullina A, Conway ARA. О способности внимания: его оценка и его роль в рабочей памяти и когнитивных способностях.Cogn. Psychol. 2005; 51: 42–100. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Cowan N, Elliott EM, Saults JS, Nugent LD, Bomb P, Hismjatullina A. Переосмысление скоростных теорий когнитивного развития: увеличение скорости запоминания без снижения точности. Psychol. Sci. 2006a; 17: 67–73. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Cowan N, Fristoe NM, Elliott EM, Brunner RP, Saults JS. Объем внимания, контроль внимания и интеллект у детей и взрослых. Mem. Cogn.2006b; 34: 1754–1768. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Cowan N, Morey CC. Как можно исследовать пределы удержания оперативной памяти при выполнении двух задач? Psychol. Sci. 2007. 18: 686–688. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Cowan N, Naveh-Benjamin M, Kilb A, Saults JS. Развитие визуальной рабочей памяти на протяжении всей жизни: когда сложно привязать функции? Dev. Psychol. 2006c; 42: 1089–1102. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Cowan N, Nugent LD, Elliott EM, Ponomarev I, Saults JS.Роль внимания в развитии кратковременной памяти: возрастные различия вербальной продолжительности восприятия. Child Dev. 1999; 70: 1082–1097. [PubMed] [Google Scholar]
  • Cowan N, Saults JS, Nugent LD. Роль абсолютного и относительного количества времени в забывании в пределах непосредственной памяти: случай сравнения высоты тона. Психон. Бык. Ред. 1997a; 4: 393–397. [Google Scholar]
  • Коуэн Н., Вуд Н.Л., Ньюджент Л.Д., Трейсман М. В словесной кратковременной памяти есть два эффекта длины слова: противоположные эффекты длительности и сложности.Psychol. Sci. 1997b; 8: 290–295. [Google Scholar]
  • Craik FIM, Birtwistle J. Упреждающее торможение при свободном отзыве. J. Exp. Psychol. 1971; 91: 120–123. [Google Scholar]
  • Crowder RG. Исчезновение кратковременной памяти. Acta Psychol. 1982; 50: 291–323. [PubMed] [Google Scholar]
  • Crowder RG. Кратковременная память: где мы находимся? Mem. Cogn. 1993; 21: 142–145. [PubMed] [Google Scholar]
  • Daneman M, Carpenter PA. Индивидуальные различия в рабочей памяти и чтении. J словесное обучение.Вербальное поведение. 1980; 19: 450–466. [Google Scholar]
  • Daneman M, Merikle PM. Рабочая память и понимание языка: метаанализ. Психон. Бык. Ред. 1996; 3: 422–433. [PubMed] [Google Scholar]
  • Дарвин К.Дж., Терви М.Т., Краудер Р.Г. Слуховой аналог процедуры частичного отчета Сперлинга: свидетельство для краткого слухового хранения. Cogn. Psychol. 1972; 3: 255–267. [Google Scholar]
  • Давелаар Э.Дж., Гошен-Готтштейн Ю., Ашкенази А., Хаарман Х.Дж., Ашер М. Возвращение к исчезновению кратковременной памяти: эмпирические и вычислительные исследования эффектов недавности.Psychol. Ред. 2005; 112: 3–42. [PubMed] [Google Scholar]
  • Эббингаус Х. Перевод Х.А. Ругера и К.Е. Буссениуса. Нью-Йорк: педагогический колледж Колумбийского университета; 18851913. Память: вклад в экспериментальную психологию. (Первоначально на немецком языке: Ueber das gedächtnis: Untersuchen zur Experimentellen Psychologie) [Google Scholar]
  • Engle RW. Объем рабочей памяти как исполнительное внимание. Curr. Реж. Psychol. Sci. 2002; 11: 19–23. [Google Scholar]
  • Engle RW, Tuholski SW, Laughlin JE, Conway ARA.Рабочая память, кратковременная память и общий гибкий интеллект: подход с латентной переменной. J. Exp. Psychol. Gen.1999; 128: 309–331. [PubMed] [Google Scholar]
  • Эрикссон К.А., Кинч В. Долговременная рабочая память. Psychol. Ред. 1995; 102: 211–245. [PubMed] [Google Scholar]
  • Фридман Н.П., Мияке А., Корли Р.П., Янг С.Е., ДеФрис Дж. К., Хьюитт Дж. К. Не все исполнительные функции связаны с интеллектом. Psychol. Sci. 2006. 17: 172–179. [PubMed] [Google Scholar]
  • Гавенс Н., Барруйе П.Задержки удержания, эффективности обработки и ресурсов внимания при развитии рабочей памяти. J. Mem. Lang. 2004. 51: 644–657. [Google Scholar]
  • Glanzer M, Cunitz AR. Два механизма хранения в свободном отзыве. J. Словесное обучение. Вербальное поведение. 1966; 5: 351–360. [Google Scholar]
  • Glenberg AM, Swanson NC. Теория временной различимости эффектов новизны и модальности. J. Exp. Psychol. Учить. Mem. Cogn. 1986; 12: 3–15. [PubMed] [Google Scholar]
  • Gold JM, Fuller RL, Robinson BM, McMahon RP, Braun EL, Luck SJ.Неповрежденный контроль внимания за кодированием рабочей памяти при шизофрении. J. Abnorm. Psychol. 2006. 115: 658–673. [PubMed] [Google Scholar]
  • Грин Р.Л. Влияние экспериментального дизайна: пример парадигмы Брауна-Петерсона. Может. J. Exp. Psychol. 1996. 50: 240–242. [Google Scholar]
  • Guttentag RE. Требование умственных усилий кумулятивной репетиции: исследование развития. J. Exp. Детская психол. 1984. 37: 92–106. [Google Scholar]
  • Hebb DO. Организация поведения.Нью-Йорк: Уайли; 1949. [Google Scholar]
  • Hockey R. Скорость представления в оперативной памяти и прямое управление стратегиями обработки ввода. Q. J. Exp. Psychol. А. 1973; 25: 104–111. [Google Scholar]
  • Джеймс У. Принципы психологии. Нью-Йорк: Генри Холт; 1890. [Google Scholar]
  • Кейн MJ, Bleckley MK, Conway ARA, Engle RW. Просмотр объема рабочей памяти с контролируемым вниманием. J. Exp. Psychol. Gen. 2001; 130: 169–183. [PubMed] [Google Scholar]
  • Кейн MJ, Hambrick DZ, Tuholski SW, Wilhelm O, Payne TW, Engle RE.Общая емкость рабочей памяти: латентно-переменный подход к вербальной и зрительно-пространственной памяти и рассуждениям. J. Exp. Psychol. Gen. 2004; 133: 189–217. [PubMed] [Google Scholar]
  • Keppel G, Underwood BJ. Упреждающее запрещение краткосрочного хранения отдельных предметов. J. Словесное обучение. Вербальное поведение. 1962; 1: 153–161. [Google Scholar]
  • Kyllonen PC, Christal RE. Разумная способность — это (чуть больше) объем рабочей памяти? Интеллект. 1990; 14: 389–433. [Google Scholar]
  • Лепин Р., Барруйе П., Камос В.Что делает рабочую память таким предсказуемым для высокого уровня познания? Психон. Бык. Ред. 2005; 12: 165–170. [PubMed] [Google Scholar]
  • Левандовски С., Дункан М., Браун GDA. Время не вызывает забвения в краткосрочных серийных воспоминаниях. Психон. Бык. Ред. 2004; 11: 771–790. [PubMed] [Google Scholar]
  • McGeoch JA. Забвение и закон неиспользования. Psychol. Rev.1932; 39: 352–370. [Google Scholar]
  • Melton AW. Значение кратковременной памяти для общей теории памяти.J. Словесное обучение. Вербальное поведение. 1963; 2: 1-21. [Google Scholar]
  • Miller GA. Магическое число семь, плюс-минус два: некоторые ограничения нашей способности обрабатывать информацию. Psychol. Rev.1956; 63: 81–97. [PubMed] [Google Scholar]
  • Miller GA. Джордж А. Миллер. В: Линдзей Г., редактор. История психологии в автобиографии. Vol. VIII. Стэнфорд, Калифорния: Издательство Стэнфордского университета; 1989. С. 391–418. [Google Scholar]
  • Миллер Г.А., Галантер Э., Прибрам К.Х. Планы и структура поведения.Нью-Йорк: Холт, Райнхарт и Уинстон, Инк; 1960. [Google Scholar]
  • Мори С.К., Коуэн Н. Когда визуальная и вербальная память конкурируют: свидетельство междоменных ограничений в рабочей памяти. Психон. Бык. Ред. 2004; 11: 296–301. [PubMed] [Google Scholar]
  • Мори К.К., Коуэн Н. Когда возникают конфликты между визуальными и вербальными воспоминаниями? Важность загрузки и извлечения рабочей памяти. J. Exp. Psychol. Учить. Mem. Cogn. 2005. 31: 703–713. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Nairne JS.Кратковременные воспоминания: аргументы против стандартной модели. Анну. Rev. Psychol. 2002; 53: 53–81. [PubMed] [Google Scholar]
  • Навех-Бенджамин М., Коуэн Н., Килб А., Чен З. Возрастные различия в немедленном серийном воспроизведении: формирование диссоциации фрагментов и емкость. Mem. Cognit. 2007. 35: 724–737. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Neath I, Surprenant A. Человеческая память. 2-е изд. Бельмонт, Калифорния: Уодсворт; 2003. [Google Scholar]
  • Nipher FE. О распределении ошибок по числам, записанным по памяти.Пер. Акад. Sci. Святой Луи. 1878; 3: ccx – ccxi. [Google Scholar]
  • Петерсон Л.Р., Петерсон М.Дж. Кратковременное удержание отдельных словесных заданий. J. Exp. Psychol. 1959; 58: 193–198. [PubMed] [Google Scholar]
  • Saults JS, Cowan N. Центральное ограничение емкости одновременного хранения визуальных и слуховых массивов в рабочей памяти. J. Exp. Psychol. 2007. 136: 663–684. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Sperling G. Информация доступна в виде кратких наглядных презентаций.Psychol. Monogr. 1960; 74 (Целый № 498) [Google Scholar]
  • Stoltzfus ER, Hasher L, Zacks RT. Рабочая память и поиск: подход к ресурсам торможения. В: Richardson JTE, Engle RW, Hasher L, Logie RH, Stoltzfus ER, Zacks RT, редакторы. Рабочая память и человеческое познание. Нью-Йорк: издательство Оксфордского университета; 1996. С. 66–88. [Google Scholar]
  • Talmi D, Grady CL, Goshen-Gottstein Y, Moscovitch M. Нейровизуализация кривой последовательного положения: тест моделей с одним магазином по сравнению с моделями с двумя магазинами.Psychol. Sci. 2005; 16: 716–723. [PubMed] [Google Scholar]
  • Tulving E, Patkau JE. Сопутствующие эффекты контекстного ограничения и частоты слов на немедленное запоминание и усвоение вербального материала. Может. J. Psychol. 1962; 16: 83–95. [PubMed] [Google Scholar]
  • Турви М.Т., Брик П., Осборн Дж. Упреждающее вмешательство в кратковременную память в зависимости от интервала удержания предшествующих элементов. Q. J. Exp. Psychol. 1970; 22: 142–147. [Google Scholar]
  • Tzeng OJL. Положительный эффект новизны при отложенном бесплатном отзыве.J. Словесное обучение. Вербальное поведение. 1973; 12: 436–439. [Google Scholar]
  • Unsworth N, Engle RW. Характер индивидуальных различий в объеме рабочей памяти: активное ведение в первичной памяти и управляемый поиск из вторичной памяти. Psychol. Ред. 2007; 114: 104–132. [PubMed] [Google Scholar]
  • Фогель EK, McCollough AW, Machizawa MG. Нейронные измерения выявляют индивидуальные различия в управлении доступом к рабочей памяти. Природа. 2005; 438: 500–503. [PubMed] [Google Scholar]
  • Фогель Е.К., Вудман Г.Ф., Luck SJ.Временной ход закрепления в зрительной рабочей памяти. J. Exp. Psychol. Гм. Восприятие. Выполнять. 2006; 32: 1436–1451. [PubMed] [Google Scholar]
  • Во, Северная Каролина, Норман Д.А. Первичная память. Psychol. Rev.1965; 72: 89–104. [PubMed] [Google Scholar]
  • Викельгрен, Вашингтон. Теория однократной хрупкости динамики памяти. Mem. Cogn. 1974; 2: 775–780. [PubMed] [Google Scholar]

Что такое компьютерная память и какие типы существуют?

Память — это электронное хранилище инструкций и данных, которые компьютер должен быстро получить.Здесь информация хранится для немедленного использования. Память — одна из основных функций компьютера, потому что без нее компьютер не смог бы нормально функционировать. Память также используется операционной системой, оборудованием и программным обеспечением компьютера.

Технически существует два типа компьютерной памяти: основная и дополнительная. Термин память используется как синоним первичной памяти или как сокращение для определенного типа первичной памяти, называемой оперативной памятью (RAM). Память этого типа размещается на микрочипах, которые физически близки к микропроцессору компьютера.

Если бы центральный процессор (ЦП) компьютера использовал только вторичное запоминающее устройство, компьютеры стали бы намного медленнее. В общем, чем больше памяти (первичной памяти) у вычислительного устройства, тем реже компьютер должен получать доступ к инструкциям и данным из более медленных (вторичных) форм хранения.

На этом изображении показано, как первичная, вторичная и кэш-память соотносятся друг с другом с точки зрения размера и скорости.

Память и хранилище

Понятия памяти и хранилища могут быть легко объединены в одно понятие; однако есть несколько явных и важных различий. Короче говоря, память — это первичная память, а хранилище — это вторичная память. Память относится к местоположению краткосрочных данных, в то время как хранилище относится к местоположению данных, хранящихся на долгосрочной основе.

Память чаще всего называется основным хранилищем на компьютере, например ОЗУ. Память также является местом обработки информации.Это позволяет пользователям получать доступ к данным, которые хранятся в течение короткого времени. Данные хранятся только в течение короткого времени, поскольку основная память является энергозависимой, то есть не сохраняется при выключении компьютера.

Термин хранилище относится к вторичной памяти, где хранятся данные в компьютере. Примером хранилища является жесткий диск или жесткий диск (HDD). Хранилище энергонезависимо, то есть информация остается там после выключения и повторного включения компьютера. Выполняемая программа может находиться в первичной памяти компьютера при использовании — для быстрого поиска информации — но когда эта программа закрывается, она находится во вторичной памяти или хранилище.

Количество доступного места в памяти и хранилище также различается. Как правило, на компьютере больше места для хранения, чем памяти. Например, у портативного компьютера может быть 8 ГБ ОЗУ, а для хранения — 250 ГБ. Разница в пространстве заключается в том, что компьютеру не нужен быстрый доступ ко всей информации, хранящейся на нем одновременно, поэтому достаточно выделить около 8 ГБ пространства для запуска программ.

Термины память и память могут сбивать с толку, потому что их использование сегодня не всегда согласовано.Например, оперативная память может называться первичным хранилищем, а типы вторичного хранилища могут включать в себя флэш-память. Чтобы избежать путаницы, может быть проще говорить о памяти с точки зрения того, является ли она энергозависимой или энергонезависимой, а о хранилище с точки зрения того, является ли она первичной или вторичной.

Как работает память компьютера?

Когда программа открыта, она загружается из вторичной памяти в первичную. Поскольку существуют разные типы памяти и хранилища, примером этого может быть программа, перемещаемая с твердотельного накопителя (SSD) в ОЗУ.Поскольку доступ к первичному хранилищу осуществляется быстрее, открытая программа сможет быстрее взаимодействовать с процессором компьютера. Доступ к первичной памяти можно получить немедленно из слотов временной памяти или других мест хранения.

Память энергозависима, это означает, что данные в памяти хранятся временно. После выключения вычислительного устройства данные, хранящиеся в энергозависимой памяти, автоматически удаляются. Когда файл будет сохранен, он будет отправлен во вторичную память для хранения.

Компьютеру доступно несколько типов памяти. Он будет работать по-разному в зависимости от типа используемой первичной памяти, но в целом полупроводниковая память больше всего связана с памятью. Полупроводниковая память будет состоять из интегральных схем с металл-оксидно-полупроводниковыми (МОП) транзисторами на основе кремния.

Типы компьютерной памяти

В целом память можно разделить на первичную и вторичную; более того, когда речь идет только о первичной памяти, существует множество типов памяти.Некоторые типы первичной памяти включают следующие

  • Кэш-память. Эта область временного хранения, известная как кэш, более доступна для процессора, чем основной источник памяти компьютера. Ее также называют памятью ЦП , потому что она обычно интегрируется непосредственно в микросхему ЦП или размещается на отдельной микросхеме с шиной, соединенной с ЦП.
  • Оперативная память. Термин основан на том факте, что процессор может получить доступ к любому месту хранения.
  • Динамическое ОЗУ. DRAM — это тип полупроводниковой памяти, которая обычно используется данными или программным кодом, необходимым процессору компьютера для работы.
  • Статическая RAM. SRAM сохраняет биты данных в своей памяти до тех пор, пока на нее подается питание. В отличие от DRAM, который хранит биты в ячейках, состоящих из конденсатора и транзистора, SRAM не нужно периодически обновлять.
  • SDRAM с двойной скоростью передачи данных. DDR SRAM — это SDRAM, которая теоретически может повысить тактовую частоту памяти как минимум до 200 МГц.
  • Синхронное динамическое ОЗУ с двойной скоростью передачи данных 4. ОЗУ DDR4 — это тип DRAM, который имеет интерфейс с высокой пропускной способностью и является преемником его предыдущих версий DDR2 и DDR3. ОЗУ DDR4 позволяет снизить требования к напряжению и повысить плотность модулей. Он сочетается с более высокой скоростью передачи данных и позволяет использовать модули памяти с двухрядным расположением выводов (DIMMS) до 64 ГБ.
  • Rambus Dynamic RAM. DRDRAM — это подсистема памяти, которая обещала передавать до 1.6 миллиардов байт в секунду. Подсистема состоит из ОЗУ, контроллера ОЗУ, шины, соединяющей ОЗУ с микропроцессором, и устройств компьютера, которые его используют.
  • Постоянная память. ROM — это тип компьютерного хранилища, содержащего энергонезависимые постоянные данные, которые, как правило, можно только читать, но не записывать. ПЗУ содержит программы, позволяющие компьютеру запускать или восстанавливать работу при каждом включении.
  • Программируемое ПЗУ. PROM — это ПЗУ, которое может быть изменено пользователем один раз.Это позволяет пользователю адаптировать программу микрокода, используя специальную машину, называемую программатором PROM .
  • Стираемый ППЗУ. EPROM — это программируемая ППЗУ, предназначенная только для чтения, которую можно стирать и использовать повторно. Стирание вызывается попаданием интенсивного ультрафиолетового света через окно, встроенное в микросхему памяти.
  • Электрически стираемый ППЗУ. EEPROM — это изменяемое пользователем ПЗУ, которое можно многократно стирать и перепрограммировать посредством приложения более высокого, чем обычно, электрического напряжения.В отличие от микросхем EPROM, EEPROM не нужно извлекать из компьютера для модификации. Однако микросхему EEPROM необходимо стереть и перепрограммировать полностью, а не выборочно.
  • Виртуальная память. Метод управления памятью, при котором вторичная память может использоваться, как если бы она была частью основной памяти. Виртуальная память использует аппаратное и программное обеспечение, позволяющее компьютеру компенсировать нехватку физической памяти путем временной передачи данных из ОЗУ в дисковое хранилище.

Хронология истории и эволюции компьютерной памяти

В начале 1940-х годов в памяти было всего несколько байтов.Одним из наиболее значительных признаков прогресса в то время было изобретение акустической памяти с линией задержки. Эта технология позволила линиям задержки хранить биты в виде звуковых волн в ртути, а кристаллы кварца действовать как преобразователи для чтения и записи битов. Этот процесс может хранить несколько сотен тысяч бит. В конце 1940-х годов начали проводиться исследования энергонезависимой памяти и была создана память на магнитных сердечниках, которая позволяла вызывать память после потери питания. К 1950-м годам эта технология была усовершенствована и коммерциализирована, что привело к изобретению PROM в 1956 году.Память на магнитных сердечниках стала настолько распространенной, что была основной формой памяти до 1960-х годов.

Полевые транзисторы металл-оксид-полупроводник, также известные как МОП-полупроводниковая память, были изобретены в 1959 году. Это позволило использовать МОП-транзисторы в качестве элементов для хранения ячеек памяти. Память MOS была дешевле и требовала меньше энергии по сравнению с памятью с магнитным сердечником. Биполярная память, в которой используются биполярные транзисторы, начали использоваться в начале 1960-х годов.

В 1961 году Боб Норман предложил концепцию твердотельной памяти, используемой в микросхеме интегральной схемы (ИС).IBM ввела память в массовое производство в 1965 году. Однако пользователи сочли, что твердотельная память в то время была слишком дорогой в использовании по сравнению с другими типами памяти. Другими достижениями в период с начала до середины 1960-х годов были изобретение биполярной SRAM, внедрение DRAM компанией Toshiba в 1965 году и коммерческое использование SRAM в 1965 году. Однотранзисторная ячейка DRAM была разработана в 1966 году, за ней последовало полупроводниковое устройство MOS, используемое для создать ROM в 1967 году. С 1968 до начала 1970-х годов MOS-память N-типа (NMOS) также начала становиться популярной.

К началу 1970-х годов память на основе МОП стала более широко использоваться в качестве формы памяти. В 1970 году у Intel появился первый коммерческий чип DRAM IC. Годом позже был разработан стираемый PROM, а в 1972 году была изобретена EEPROM.

Обучение и память (Раздел 4, Глава 7) Нейронаука в Интернете: Электронный учебник для нейронаук | Кафедра нейробиологии и анатомии

Анализ анатомических и физических основ обучения и памяти — один из величайших успехов современной нейробиологии.Тридцать лет назад было мало что известно о том, как работает память, но теперь мы знаем многое. В этой главе будут обсуждаться четыре вопроса, которые имеют ключевое значение для обучения и памяти. Во-первых, какие бывают типы памяти? Во-вторых, где в мозгу находится память? Одна из возможностей состоит в том, что человеческая память похожа на микросхему памяти в персональном компьютере (ПК), которая хранит всю память в одном месте. Вторая возможность заключается в том, что наши воспоминания распределены и хранятся в разных областях мозга.В-третьих, как работает память? Какие типы изменений происходят в нервной системе при формировании и хранении памяти, задействованы ли в памяти конкретные гены и белки и как память может сохраняться на всю жизнь? В-четвертых, важен ли этот вопрос для многих людей, особенно с возрастом: как сохранить и улучшить память и как исправить ее, если она нарушена?

7.1 Типы памяти

Психологи и нейробиологи разделили системы памяти на две широкие категории: декларативные и недекларативные (рис.1). Система декларативной памяти — это, пожалуй, самая известная система памяти. Это система памяти, которая имеет сознательный компонент и включает в себя воспоминания о фактах и ​​событиях. Такой факт, как «Париж — столица Франции», или событие, подобное предыдущему отпуску в Париже. Недекларативная память, также называемая неявной памятью, включает типы систем памяти, которые не имеют сознательного компонента, но, тем не менее, чрезвычайно важны. Они включают воспоминания о навыках и привычках (например,g., езда на велосипеде, вождение автомобиля, игра в гольф, теннис или пианино), феномен, называемый праймингом, простые формы ассоциативного обучения [например, классическая обусловленность (Павловская обусловленность)] и, наконец, простые формы неассоциативного обучения, такие как привыкание и сенсибилизация. Сенсибилизация будет подробно обсуждена позже в этой главе. Декларативная память — это «знание того», а недекларативная память — это «знание того, как».

Рисунок 7.1
Системы памяти в головном мозге. (По материалам Squire and Knowlton, 1994 г.)

7.2 Тестирование памяти

Рисунок 7.2
Тест памяти на распознавание слов.

Рисунок 7.3
Тест памяти для распознавания объектов.

Всем интересно знать, насколько хорошо они запоминают, поэтому давайте проведем простой тест памяти.Тест (рис. 7.2) представит список из 15 слов, затем будет пауза, и вас спросят, помните ли вы некоторые из этих слов. К сожалению, для этого теста вам придется отложить ручку и не читать дальше главы, пока не завершите тест.

Этот тест памяти называется тестом DRM в честь его создателей Джеймса Диза, Генри Рёдигера и Кэтлин Макдермотт. Это не было уловкой, а чтобы проиллюстрировать очень интересную и важную особенность памяти.Нам нравится думать, что воспоминание похоже на то, как сделать фотографию и поместить эту фотографию в ящик картотеки, чтобы ее позже забрать (вспомнить) как «память» точно так, как она была там изначально помещена (сохранена). Но память больше похожа на то, чтобы сделать снимок, разорвать его на мелкие кусочки и положить их в разные ящики. Затем память вызывается путем восстановления памяти из отдельных фрагментов памяти. Причина, по которой так много людей ошибочно считают, что «сладкий» был в списке, заключается в том, что в списке было так много других слов, имевших сладкий оттенок.«Провал» этого теста — на самом деле неплохой результат. Люди с болезнью Альцгеймера обычно не говорят, что «сладкое» было в списке. Они не могут создать нормальные ассоциации, связанные с воспроизведением воспоминаний.

Список слов дает представление об обработке и извлечении из памяти, но это не совсем хороший тест на способность «сырой» памяти, потому что на нее могут влиять искажения и предубеждения. Чтобы избежать этих проблем, психологи разработали другие тесты памяти. Один из них — это тест на распознавание объекта (рисунок 7.3) протестировать декларативную память. Этот тест хорош еще и тем, что, как мы увидим позже, его можно использовать даже на животных. Тест включает в себя представление испытуемому двух разных предметов, и его просят запомнить эти предметы. После паузы снова отображаются два объекта, один из которых новый, а другой показывался ранее. Испытуемых просят идентифицировать новый объект, и для этого им необходимо запомнить, какой из них был показан ранее. В некоторой степени родственный тест — это тест местоположения объекта, в котором испытуемых просят запомнить местоположение объекта на двумерной поверхности.

Примеры недекларативной памяти, такие как ассоциативное обучение, можно проверить, сопоставляя один стимул с другим, а затем проверяя, научился ли испытуемый устанавливать связь между двумя стимулами. Классическим примером является парадигма, разработанная русским физиологом Иваном Павловым, которая теперь называется классической или павловской обусловленностью. В классическом кондиционировании (рис. 7.4) новый или слабый раздражитель (условный раздражитель, CS), такой как звук, сочетается со стимулом, таким как еда, который обычно вызывает рефлексивную реакцию (безусловный ответ, UR; безусловный раздражитель, US), например слюноотделение.После достаточного обучения с использованием условных презентаций CS-US (что может быть единичным испытанием), CS способен вызывать реакцию (условную реакцию, CR), которая часто напоминает UR (или какой-либо ее аспект).

Рисунок 7.4
Классическая (павловская) обусловленность.

7.3 Локализация памяти

Теперь перейдем к вопросу о том, где находится память.Есть три основных подхода.

  1. Изображения. Современные методы визуализации, такие как фМРТ (функциональная магнитно-резонансная томография) или ПЭТ (позитронно-эмиссионная томография), позволяют «видеть» области мозга, которые активны во время определенных задач мозга. Если испытуемого помещают в сканер фМРТ и проводят тест памяти, можно определить, какие области мозга активны, и эта активность предположительно связана с тем, где в мозгу обрабатывается и / или сохраняется память.

Рис. 7.5
ПЭТ-сканирование мозга во время теста на определение местоположения объекта. (из A. M. Owen и др., J. Cog. Neurosci. 8: 6, 588-602, 1996.)

На рис. 7.5 показан пример ПЭТ-сканирования человека, выполняющего проверку местоположения объекта.Цветовой код таков, что более яркие и красные области указывают на повышенную мозговую активность. Наиболее активная область — гиппокамп. При обсуждении памяти гиппокамп упоминается неоднократно, потому что это основная часть мозга, участвующая в декларативной функции памяти. Эта иллюстрация ясно показывает, что гиппокамп участвует в запоминании местоположения объекта. Но, как мы скоро увидим, не здесь хранятся все воспоминания.

  1. Поражения головного мозга. В этой экспериментальной процедуре небольшие части мозга мышей или крыс удаляются хирургическим путем или химически инактивируются, и животных систематически исследуют, чтобы определить, повлияло ли поражение на какую-либо систему памяти.

  2. Заболевания и травмы головного мозга. Здесь ученые используют людей, у которых были серьезные травмы головного мозга, например, в результате инсульта или опухоли головного мозга в определенной области мозга.Если у пациента обнаруживается дефицит памяти, вполне вероятно, что поврежденная область мозга задействована в этой памяти.

Классическое исследование локализации памяти было результатом операции, проведенной Генри Молисону, пациенту, который в научном сообществе был известен только как «H.M.» до своей смерти в 2008 году. Х. М. известен в литературе по нейробиологии, потому что его мозг дал важную информацию о локализации функции памяти. В 1950-х годах Х.У М. была диагностирована трудноизлечимая эпилепсия, и, хотя существуют фармакологические методы лечения, в некоторых случаях единственным лечением является удаление части мозга, вызывающей припадки. Следовательно, гиппокамп H.M. был удален с обеих сторон. Рисунок 7.6 (справа) представляет собой МРТ здорового человека, показывающий область гиппокампа, тогда как Рисунок 7.6 (слева) показывает МРТ пациента H.M. после удаления гиппокампа.

Рисунок 7.6
Сканы Брана H.M. (слева) и нормальный человек (справа).(Авторское право © 1997 Сюзанн Коркин, использовано с разрешения The Wylie Agency LLC.)

Перед операцией H.M. имел прекрасную память, но после операции H.M. имел очень серьезный дефицит памяти. В частности, после операции способность Х.М. формировать какие-либо новые воспоминания о фактах и ​​событиях была серьезно нарушена; ему было очень трудно выучить новые словарные слова; он не мог вспомнить, что произошло накануне. Так что если H.M. если бы у него было интервью на следующий день после предыдущего интервью, он почти не помнил бы интервью или события во время него.Это исследование ясно показало, что гиппокамп имеет решающее значение для формирования памяти. Но тогда как H.M. ему было очень трудно формировать новые воспоминания о фактах и ​​событиях, у него все еще были все его старые воспоминания о фактах и ​​событиях. В частности, у него были все его детские воспоминания и все воспоминания до операции. Этот тип дефицита памяти называется антероградной амнезией . (Напротив, ретроградная амнезия , относится к потере старых воспоминаний.) Исследования H.М. ясно указал, что, хотя гиппокамп имеет решающее значение для формирования новых воспоминаний, это не то место, где хранятся старые воспоминания. Теперь известно, что эти старые воспоминания хранятся в других частях мозга, например, в лобной коре. Процесс преобразования изначально неустойчивой памяти в более устойчивую форму называется консолидацией . Этот процесс включает в себя память, хранящуюся в другой части мозга, чем исходное место ее кодирования.

Х. был также интересен тем, что, хотя его способность формировать новые воспоминания о фактах и ​​событиях была серьезно нарушена, он мог формировать новые воспоминания о навыках и привычках. Хотя он мог сформировать новые воспоминания о навыках и привычках, он не знал, что у него есть навыки! Он не осознавал воспоминания; он не мог заявить, что он у него есть. Это открытие ясно указывает на то, что память о навыках и привычках формируется в гиппокампе на , а не на . В совокупности мы узнали из этих исследований H.М. и другие пациенты отмечают, что память распределена по нервной системе, и разные области мозга участвуют в опосредовании различных типов памяти.

Рисунок 7.7 суммирует результаты многих десятилетий исследований анатомического локуса систем памяти. Медиальная височная доля и такие структуры, как гиппокамп, связаны с воспоминаниями о фактах и ​​событиях; полосатое тело связано с воспоминаниями о навыках и привычках; неокортекс участвует в прайминге; миндалевидное тело связано с эмоциональными воспоминаниями; и мозжечок с простыми формами ассоциативного обучения.Нижние области головного мозга и спинной мозг содержат еще более простые формы обучения. Итак, память хранится не в одном месте мозга. Распространяется в разных частях мозга .

Рисунок 7.7
Системы памяти и их анатомические локусы. (Изменено из Squire and Knowlton, 1994)

7.4 механизма памяти

Модельные системы для изучения механизмов памяти

Рисунок 7.8
Aplysia californica и ее нервные клетки.

Многое из того, что было изучено о нейронных и молекулярных механизмах обучения и памяти, было получено в результате использования так называемых «модельных систем», которые поддаются клеточному анализу.Одна из этих модельных систем проиллюстрирована на рисунке 7.8A. Aplysia californica водится в приливных бассейнах на побережье Южной Калифорнии. Его длина составляет около шести дюймов, а вес — около 150 граммов. На первый взгляд, это существо выглядит бесперспективным, но нейробиологи использовали технические преимущества этого животного, чтобы получить фундаментальное представление о молекулярных механизмах памяти. Действительно, новаторские открытия Эрика Кандела с использованием этого животного были отмечены получением им Нобелевской премии по физиологии и медицине в 2000 году. Aplysia имеет три технических преимущества.

Во-первых, он демонстрирует простые формы недекларативного (имплицитного) обучения, такие как классическое (павловское) обусловливание, оперантное обусловливание и сенсибилизация.

Во-вторых, Аплизии имеют очень простую нервную систему. По сравнению с сотнями миллиардов нервных клеток в человеческом мозге, вся нервная система этого животного насчитывает всего около 10 000 клеток. Эти клетки распределены в разных ганглиях, как показано на рисунке 7.8B. В каждом таком ганглии всего около 2000 клеток, но он способен опосредовать или контролировать ряд различных форм поведения. Это означает, что любое поведение может контролироваться 100 нейронами или даже меньше. У одного есть возможность проработать полную нейронную цепь, лежащую в основе поведения, а затем, после обучения животного, можно исследовать нейронную цепь, чтобы определить, что изменилось в цепи, лежащей в основе памяти.

В-третьих, ганглии содержат нейроны очень большого размера.На рис. 7.8B показан ганглий под микроскопом для препарирования. Его диаметр составляет около 2 мм. Сферические структуры ганглиев представляют собой клеточные тела отдельных нейронов. Каждый нейрон идентифицируем, имеет уникальную локализацию и функцию. Связанное с этим преимущество состоит в том, что отдельные нейроны могут быть удалены и помещены в культуральную среду, где они могут выжить в течение многих дней. Действительно, несколько нейронов могут быть удалены из ганглиев, и они восстанавливают свои нормальные синаптические связи, тем самым обеспечивая очень мощную экспериментальную систему для изучения физиологии нервных клеток и свойств связей между ними.На рис. 7.8C показан пример сенсорного нейрона (маленькая клетка справа) и двигательного нейрона (большая клетка слева) в культуре. На микрофотографии можно увидеть тень микроэлектрода, пронзившего сенсорный нейрон, и тень микроэлектрода, пронзившего мотонейрон для выполнения внутриклеточных записей.

Сенсибилизация, простая форма недекларативного обучения, поддающаяся детальному клеточному анализу

Рисунок 7.9
Рисунок Aplysia (A) и график данных (B) сенсибилизации.

А. Б. С.

Рисунок 7.10
Рефлекторные ответы контрольного животного (A), животного, прошедшего обучение сенсибилизации (B), и сенсибилизированного животного (C).

На рисунках 7.9 и 7.10 показано простое поведение животного и простая форма обучения, называемая сенсибилизацией. Животное испытывают, стимулируя его хвост слабым электрическим током (7.9) или слабым механическим постукиванием (7.10). Эти стимулы вызывают защитный рефлекс отвода тела, который включает хвост и близлежащие участки, такие как жабры и мясистый носик, называемый сифоном. В ответ на тестовые стимулы, доставляемые каждые пять минут, снятие средств довольно надежно.Каждый раз они имеют примерно одинаковую продолжительность (Рисунки 7.9B, C, 7.10A). Но если сильный вредный стимул (например, электрический шок) доставляется другой части животного, такой как его стенка тела, последующие тестовые стимулы к хвосту дают усиленные ответы (рис. 7.9B и 7.10B). Это пример простой формы обучения, называемой сенсибилизацией. Он определяется как усиление реакции на тестовый стимул в результате доставки животному сильного, как правило, вредного стимула.В некотором смысле животное узнает, что находится в «пугающей» среде. Сенсибилизация — это повсеместная форма обучения, которую проявляют все животные, включая человека.

Нейронная цепь и механизмы сенсибилизации

  1. Нейронная цепь. Мы можем воспользоваться преимуществами крупных нервных клеток Aplysia, и возможностью делать внутриклеточные записи с них, чтобы проработать нижележащую нервную цепь. На рис. 7.11 в упрощенном виде показаны ключевые компоненты лежащей в основе нейронной цепи.Стимуляция кожи активирует сенсорные нейроны (SN) (здесь показан только один из них), которые создают глутаматергические возбуждающие синаптические связи (треугольники) с двигательными нейронами (MN). Если суммарный синаптический вход в мотонейроны достаточно велик, моторные нейроны будут активированы, и потенциалы действия будут распространяться из ганглия, вызывая в конечном итоге сокращение мышцы. Таким образом, стимуляция кожи возбуждает сенсорные нейроны, сенсорные нейроны активируют мотонейроны, а мотонейроны сокращают мышцы.Также должно быть очевидно, что чем больше активация мотонейронов, тем сильнее будет последующий рефлекторный ответ. Этот рефлекс в аплизии похож на рефлекс коленного рефлекса или рефлекса растяжения, опосредованный аналогичными цепями в спинном мозге позвоночных.

    Рисунок 7.11
    Нейронная цепь для защитного рефлекса отмены.


  2. Механизмы сенсибилизации. Сенсибилизирующие стимулы приводят к высвобождению нейромедиатора серотонина (5-HT) (представлен клеткой, помеченной IN и окрашенной в фиолетовый цвет на рисунке 7.11). 5-HT модулирует силу связи между сенсорным нейроном и двигательным нейроном. Потенциал действия в сенсорном нейроне до обучения вызывает небольшой возбуждающий постсинаптический потенциал (ВПСП) в двигательном нейроне (рис. 7.12A). Но после доставки сенсибилизирующего стимула потенциал действия в сенсорном нейроне приводит к большему синаптическому потенциалу в двигательном нейроне (рис.12С). Больший синаптический потенциал в двигательном нейроне увеличивает вероятность того, что двигательный нейрон будет активирован в большей степени и вызовет большее сокращение мышцы (то есть сенсибилизацию).

Один из принципов обучения и памяти, основанный на исследованиях этого простого животного, и этот принцип справедлив и для нашего мозга, заключается в том, что обучение включает изменения в силе синаптических связей между нейронами .Обучение происходит не из-за реорганизации нервной системы или роста новых нейронов. Что изменилось, так это то, что изменилась сила ранее существовавшего соединения.

Теперь мы можем пойти дальше этого анализа и спросить, каковы биохимические механизмы, лежащие в основе обучения и памяти. Мы разделим обсуждение на две временные области памяти; кратковременная память и долговременная память. Мы уже обсуждали различные типы памяти, такие как декларативная и недекларативная.Есть также разные временные области памяти. Краткосрочные воспоминания похожи на память о телефонном номере, которая длится несколько минут, а долговременная память — это воспоминания на несколько дней, недель или всю жизнь.

Рисунок 7.12A
Перед сенсибилизацией. Двигайте синий шар, чтобы управлять анимацией.

Рисунок 7.12B
Во время сенсибилизации. Двигайте синий шар, чтобы управлять анимацией.

Рисунок 7.12C
После сенсибилизации. Управляйте анимацией, перемещая синий шар.

  1. Механизмы кратковременной сенсибилизации. Механизмы кратковременной памяти для сенсибилизации показаны на рисунке 7.12B. Сенсибилизирующий стимул приводит к высвобождению нейромедиатора 5-HT. 5-HT связывает два типа рецепторов на сенсорном нейроне; один связан с системой DAG / PKC, а другой — с циклической системой AMP / PKA. Это те же общие каскады, которые вы изучили в биохимии. Механизмы обучения эволюционировали, чтобы кооптировать некоторые биохимические механизмы, которые уже присутствуют во всех клетках, которые использовали их специально для механизма памяти в нервных клетках. Протеинкиназы проявляют два типа действия.Во-первых, они регулируют свойства различных мембранных каналов (маленькие ворота на рисунке (рис. 7.12) представляют мембранные каналы, которые лежат в основе инициирования и реполяризации потенциала действия). Следовательно, после сенсибилизирующего стимула количество кальция, который входит в синаптический конец во время потенциала действия и вызывает высвобождение медиатора, будет увеличиваться. Кроме того, модуляция мембранных каналов приводит к увеличению возбудимости сенсорного нейрона, и в результате тестовый стимул к коже вызывает большее количество потенциалов действия.Во-вторых, киназы регулируют другие клеточные процессы, участвующие в высвобождении медиатора, такие как размер пула синаптических везикул, доступных для высвобождения в ответ на приток Ca 2+ с каждым потенциалом действия. Наконец, 5-HT приводит к изменению свойств постсинаптического мотонейрона. В частности, 5-HT приводит к увеличению количества рецепторов глутамата. Последствия этих процессов можно увидеть, сравнив силу синаптической связи, созданной ранее одним потенциалом действия (Рисунок 7.12A) и после (рис. 7.12C) сенсибилизации. Конкретные детали всех токов и процессов не критичны. Однако важно знать общие принципы. Один из принципов состоит в том, что обучение предполагает использование вторичных систем обмена сообщениями . Здесь задействованы как протеинкиназа C (PKC), так и протеинкиназа A (PKA). Это довольно общий принцип. В каждом из когда-либо изучавшихся примеров обучения, будь то позвоночных или беспозвоночных, задействованы системы вторичного обмена сообщениями.Второй принцип заключается в том, что память включает модуляцию каналов мембран нейронов. Они могут включать каналы, которые непосредственно регулируют высвобождение медиатора (т.е. каналы Ca 2+ в пресинаптическом нейроне), каналы, которые регулируют возбудимость нейронов, и каналы, которые опосредуют синаптические ответы в постсинаптическом нейроне. Третий принцип заключается в том, что циклический AMP является одним из важнейших вторичных мессенджеров, которые задействованы в памяти . Получив эту информацию, вы можете начать думать о том, как можно улучшить память на основе ваших знаний о биохимии, лежащей в основе.

Мы обсудили механизм кратковременной памяти. Оно «кратковременное», потому что память преходяща, и это так потому, что лежащие в основе биохимические изменения преходящи. Продолжительность памяти зависит от того, как долго различные белки-субстраты (например, мембранные каналы) фосфорилируются. PKA будет активироваться только на короткое время после кратковременного стимула, потому что циклический AMP будет деградирован, а уровни PKA уменьшатся. Протеин-фосфатазы удаляют фосфатные группы на белках-субстратах, которые «хранят» память.

Рисунок 7.13
Структурные изменения сенсорных нейронов, связанные с длительной сенсибилизацией. (Изменено из M. Wainwright et al., J. Neurosci. 22: 4132-4141, 2002.)

  1. Механизмы длительной сенсибилизации. Есть два основных различия между краткосрочной и долгосрочной памятью. Долгосрочные воспоминания включают изменения в синтезе белка и регуляции генов, тогда как краткосрочные воспоминания — нет.И долговременная память во многих случаях включает структурные изменения. На рис. 7.13 показаны примеры процессов двух сенсорных нейронов, заполненных красителем, одного от нетренированного животного и одного от обученного животного. Показаны толстый аксональный отросток нейрона и множество мелких ветвей. Вдоль ветвей видны небольшие точечные вздутия или варикозные узлы. Эти варикозные узлы являются пресинаптическими окончаниями сенсорных нейронов, которые контактируют с другими нейронами, такими как двигательные нейроны.(Моторные нейроны нельзя увидеть, потому что только сенсорные нейроны были заполнены красителем.) В части B на рис. 7.13 показан пример сенсорного нейрона, которому инъецировали краситель у нетренированного животного, а в части A показан тот, который получил был заполнен красителем через 24 часа после тренировки по сенсибилизации. Между этими двумя нейронами есть большая разница. Нейрон обученного животного имеет большее количество ветвей и большее количество синаптических варикозных расширений, чем нейрон необученного животного.Следовательно, долговременная память включает изменения в структуре нейронов, включая рост новых отростков и синапсов. Итак, если вы вспомните что-нибудь об этом материале о памяти завтра, или на следующей неделе, или в следующем году, это будет потому, что в вашем мозгу начинаются структурные изменения синапсов!

Рисунок 7.14
Гены, участвующие в долговременной сенсибилизации.

Учитывая, что долговременная память включает в себя изменения в экспрессии генов, основной целью нейробиологов является определение конкретных генов и белков, которые участвуют в долговременной памяти. На рис. 7.14 показаны некоторые гены и белки, участвующие в долговременной сенсибилизации. Обратите внимание, что цАМФ, один из вторых мессенджеров, участвующих в кратковременной памяти, также участвует в индукции долговременной памяти.Но теперь, в дополнение к его эффектам на фосфорилирование мембранных каналов, цАМФ, через PKA, фосфорилирует факторы транскрипции, такие как CREB ( c AMP r ответственный e lement b , включая белок). Факторы транскрипции, такие как CREB, при фосфорилировании способны регулировать экспрессию генов, что приводит к изменениям в экспрессии белков, которые важны для индукции и поддержания долгосрочных изменений синаптической силы и, следовательно, долговременной памяти.

Обратите внимание, что не существует единого «гена волшебной памяти» — скорее, индукция и поддержание памяти, даже в одном нейроне, включает в себя задействование множества генов и белков, которые действуют синергетически, изменяя свойства нейронов и регулируя свойства нейрона и сила синапса. Также обратите внимание, что изменения в экспрессии генов не происходят сразу — есть разные фазы. Некоторые изменения в экспрессии генов происходят рано, некоторые даже через 24 часа после обучения.

Долгосрочная потенциация (ДП): вероятный синаптический механизм декларативной памяти

Считается, что стойкая форма синаптической пластичности, называемая долговременной потенциацией (ДП), участвует во многих примерах декларативной памяти. Он присутствует в гиппокампе, который, как известно, участвует в декларативной памяти. LTP может быть изучен на препаратах срезов головного мозга, где электрический шок (тестовый стимул) может быть доставлен к афферентным волокнам, и результирующий суммарный EPSP может быть записан в постсинаптическом нейроне (Рисунок 7.15А). Если путь стимулируется неоднократно (например, каждую минуту), амплитуда ВПСП остается постоянной (рис. 7.15B).

Доставка короткой последовательности высокочастотных (100 Гц) стимулов (т. Е. Столбняка) длительностью 1 с на афферентный нерв вызывает два типа усиления постсинаптического нейрона. Во-первых, это временное облегчение, называемое посттетанической потенциацией (ПТП), которое проходит через несколько минут. Во-вторых, вслед за PTP следует очень продолжительное усовершенствование EPSP, называемое LTP.LTP — это механизм, необходимый для хранения долговременной памяти (рис. 7.15B).

Рисунок 7.16
Анимация индукции и экспрессии LTP.

Рецептор глутамата NMDA-типа имеет решающее значение для некоторых форм LTP, в частности LTP в синапсе CA3-CA1 в гиппокампе. Постсинаптические шипы нейронов CA1 имеют два типа рецепторов глутамата; Рецепторы глутамата NMDA-типа и рецепторы глутамата AMPA-типа (Рисунки 7.16А). Оба рецептора проницаемы для Na + и K + , но у NMDA-типа есть две дополнительные особенности. Во-первых, помимо того, что он проницаем для Na + , он также имеет значительную проницаемость для Ca 2+ . Во-вторых, этот канал обычно блокируется Mg 2+ .

Даже если глутамат связывается с рецептором NMDA и вызывает конформационные изменения, не происходит оттока K + или притока Na + и Ca 2+ , потому что канал «закупорен» или заблокирован Mg. 2+ .Таким образом, слабый тестовый стимул не откроет этот канал, потому что он заблокирован Mg 2+ . Слабый тестовый стимул вызовет EPSP, но этот EPSP будет опосредован рецептором AMPA. Как будто рецептора NMDA даже не было.

Теперь рассмотрим последствия появления столбняка (рис. 7.16B). Во время столбняка будет происходить пространственное и временное суммирование ВПСП, продуцируемых множеством афферентных синапсов в общей постсинаптической клетке (Рисунок 7.15А). Следовательно, мембранный потенциал постсинаптического нейрона будет значительно деполяризован, гораздо больше, чем деполяризация, вызванная одним афферентным тестовым стимулом. Поскольку внутренняя часть клетки становится положительной с большим синаптическим входом, положительно заряженный Mg 2+ отталкивается внутренней положительностью и «выталкивается» из канала. Теперь канал отключен, и Ca 2+ может попасть в позвоночник через разблокированный рецептор NMDA. Ca 2+ , который попадает в клетку, активирует различные протеинкиназы, которые затем вызывают долгосрочные изменения.Одним из компонентов долгосрочных изменений является внедрение новых рецепторов AMPA в постсинаптическую мембрану (рис. 7.16C). Следовательно, после столбняка передатчик, высвобождаемый пресинаптическим нейроном под действием тестового стимула, будет связываться с большим количеством рецепторов на постсинаптическом нейроне. Если больше рецепторов связаны и, следовательно, открыты, будет производиться более крупный (потенцированный) ВПСП (то есть LTP) (рис. 7.16C). Помимо увеличения количества постсинаптических рецепторов AMPA, есть свидетельства того, что большее количество медиатора высвобождается из пресинаптических нейронов.Комбинация пресинаптических и постсинаптических эффектов будет действовать синергетически, увеличивая размер синаптического потенциала в постсинаптическом нейроне. Обратите внимание, что этот пример синаптического механизма декларативной памяти имеет некоторое сходство с синаптическим механизмом для примера недекларативной памяти (сенсибилизации), рассмотренного ранее. Хотя конкретные детали различаются, оба включают активацию систем вторичных мессенджеров и регуляцию мембранных каналов. Следовательно, на фундаментальном механистическом уровне, похоже, не существует значительных различий между двумя основными классами систем памяти.Основное различие заключается в области мозга и нервной цепи, в которые встроен механизм обучения.

7.5 Расширение памяти

Рисунок 7.17
График данных улучшенной памяти у трансгенных мышей.

Зная некоторые гены и белки, участвующие в памяти, мы можем использовать эту информацию, чтобы попытаться как проверить роль определенных белков в памяти, так и улучшить память.Одним из экспериментальных способов решения проблемы является использование трансгенной технологии, при которой представляющий интерес ген может быть сверхэкспрессирован в организме животного путем введения его в яйцеклетку. Когда потомство перерастет во взрослую особь, можно будет проверить результаты его тестов на память. Пример этого подхода показан на рисунке 7.17. Здесь роль рецептора NMDA исследовали Джо Цзянь и его коллеги, которые тогда работали в Принстонском университете. Если рецепторы NMDA важны для индукции LTP, а LTP важны для декларативной памяти, можно было бы ожидать, что животные, которые имеют большее количество рецепторов NMDA, будут учиться легче.Рецепторы NMDA были сверхэкспрессированы у мышей, и мышей тестировали с помощью теста распознавания объектов, который обсуждался ранее в этой главе.

Чтобы оценить производительность мыши в задаче распознавания объекта, экспериментатор измеряет количество времени, которое мышь тратит на изучение одного объекта в течение некоторого заранее заданного периода, по сравнению с количеством времени, которое мышь тратит на исследование другого объекта. Если мышь помнит, что раньше видела один из объектов, она потратит больше времени на изучение нового.Как показано на рис. 7.17, через час после первоначального представления объектов мыши очень хорошо справляются с тестом. Действительно, они верны примерно в 100% случаев. Они знают новый объект. Однако уже через день производительность памяти оставляет желать лучшего, а через три дня становится еще хуже. К одной неделе у мышей не обнаруживается памяти распознавания.

А как насчет мышей, получивших дополнительные рецепторы NMDA? Теперь, через день после тренировки, у них прекрасная память! Таким образом, дополнительные рецепторы привели к улучшению работы памяти.Это хорошая новость, но плохая новость в том, что через неделю память не улучшится. Это несколько разочаровывающее открытие не должно вызывать удивления. Хотя рецепторы NMDA важны для памяти, это еще не все. Как указывалось ранее в этой главе, память включает синергетическое взаимодействие множества генов и белков. Поэтому для дальнейшего улучшения памяти необходимо будет манипулировать несколькими генами. В настоящее время это сделать сложно, но, вероятно, в ближайшем будущем это станет возможным.Также будет возможно сверхэкспрессировать интересующие гены в целевых областях человеческого мозга. Будущее лечения людей с нарушениями памяти выглядит многообещающим.

Этот анимационный ролик, сделанный аспирантами Джулии Хилл и Натальей Розас де О’Лафлин из программы выпускников неврологии в Медицинской школе Макговерна в UTHealth, объясняет концепцию синаптической пластичности.Он занял третье место в конкурсе видео, посвященном открытию общества нейробиологии в 2011 году.

Проверьте свои знания

Пациент в возрасте 50 лет с недавним повреждением гиппокампа в результате инсульта, вероятно, будет иметь все следующие дефициты, ЗА ИСКЛЮЧЕНИЕМ:

A. Трудности с изучением новых фактов

B. Затруднения при описании недавнего события

с.Затруднения в изучении нового словарного слова

D. Затруднения при воспроизведении детских воспоминаний

E. Затруднения с запоминанием лица

Пациент в возрасте 50 лет с недавним повреждением гиппокампа в результате инсульта, вероятно, будет иметь все следующие дефициты, ЗА ИСКЛЮЧЕНИЕМ:

A. Проблемы с изучением новых фактов. Этот ответ НЕПРАВИЛЬНЫЙ.

Гиппокамп участвует в декларативной памяти, включая память на факты.

B. Затруднения при описании недавнего события

C. Затруднения в изучении нового словарного слова

D. Трудности вспомнить детские воспоминания

E. Проблемы с запоминанием лица

Пациент в возрасте 50 лет с недавним повреждением гиппокампа в результате инсульта, вероятно, будет иметь все следующие дефициты, ЗА ИСКЛЮЧЕНИЕМ:

А.Сложность усвоения новых фактов

B. Затруднения при описании недавнего события. Этот ответ НЕПРАВИЛЬНЫЙ.

Гиппокамп участвует в декларативной памяти, включая память о недавних событиях.

C. Затруднения в изучении нового словарного слова

D. Трудности вспомнить детские воспоминания

E. Проблемы с запоминанием лица

Пациент в возрасте 50 лет с недавним повреждением гиппокампа в результате инсульта, вероятно, будет иметь все следующие дефициты, ЗА ИСКЛЮЧЕНИЕМ:

А.Сложность усвоения новых фактов

B. Затруднения при описании недавнего события

C. Проблемы с изучением нового словарного слова. Этот ответ НЕПРАВИЛЬНЫЙ.

Гиппокамп участвует в декларативной памяти, включая память словарных слов (семантическая память).

D. Трудности вспомнить детские воспоминания

E. Проблемы с запоминанием лица

Пациент в возрасте 50 лет с недавним повреждением гиппокампа в результате инсульта, вероятно, будет иметь все следующие дефициты, ЗА ИСКЛЮЧЕНИЕМ:

А.Сложность усвоения новых фактов

B. Затруднения при описании недавнего события

C. Затруднения в изучении нового словарного слова

D. Проблемы с воспроизведением детских воспоминаний. Ответ ПРАВИЛЬНЫЙ!

Гиппокамп участвует в формировании новых воспоминаний, но не в хранении старых воспоминаний после того, как они были объединены.

E.Сложность запоминания лица

Пациент в возрасте 50 лет с недавним повреждением гиппокампа в результате инсульта, вероятно, будет иметь все следующие дефициты, ЗА ИСКЛЮЧЕНИЕМ:

A. Трудности с изучением новых фактов

B. Затруднения при описании недавнего события

C. Затруднения в изучении нового словарного слова

D. Трудности вспомнить детские воспоминания

E.Проблемы с запоминанием лица. Этот ответ НЕПРАВИЛЬНЫЙ.

Гиппокамп участвует в распознавании объектов.

Кратковременная память может включать в себя все следующие процессы, ЗА ИСКЛЮЧЕНИЕМ:

А.Регуляция экспрессии гена

B. Активация систем вторичного обмена сообщениями

C. Модуляция мембранных каналов

D. Модуляция расцепителя передатчика

Кратковременная память может включать в себя все следующие процессы, ЗА ИСКЛЮЧЕНИЕМ:

A. Регулирование экспрессии генов. Этот ответ ПРАВИЛЬНЫЙ!

Регуляция экспрессии генов связана с долгосрочными воспоминаниями, а не с краткосрочными.

B. Активация систем вторичного обмена сообщениями

C. Модуляция мембранных каналов

D. Модуляция расцепителя передатчика

Кратковременная память может включать в себя все следующие процессы, ЗА ИСКЛЮЧЕНИЕМ:

A. Регуляция экспрессии гена

B. Активация систем вторичного обмена сообщениями. Этот ответ НЕПРАВИЛЬНЫЙ.

Активация систем вторичного обмена сообщениями, таких как цАМФ, связана с кратковременной памятью.

C. Модуляция мембранных каналов

D. Модуляция расцепителя передатчика

Кратковременная память может включать в себя все следующие процессы, ЗА ИСКЛЮЧЕНИЕМ:

A. Регуляция экспрессии гена

Б.Активация систем второго мессенджера

C. Модуляция мембранных каналов. Ответ НЕПРАВИЛЬНЫЙ.

Каналы с синхронизацией по напряжению и со стробированием передатчика связаны с кратковременной памятью.

D. Модуляция расцепителя передатчика

Кратковременная память может включать в себя все следующие процессы, ЗА ИСКЛЮЧЕНИЕМ:

А.Регуляция экспрессии гена

B. Активация систем вторичного обмена сообщениями

C. Модуляция мембранных каналов

D. Модуляция расцепителя передатчика. Этот ответ НЕПРАВИЛЬНЫЙ.

Изменения силы синапсов связаны с кратковременной памятью.

Классический кондиционер — это пример:

А.Семантическая память

Б. Эпизодическая память

C. Неявная память

D. Декларативная память

E. Неассоциативная память

Классический кондиционер — это пример:

A. Семантическая память. Этот ответ НЕПРАВИЛЬНЫЙ.

Семантическая память — это тип декларативной памяти, тогда как классическое кондиционирование — это тип недекларативной (неявной) памяти.

Б. Эпизодическая память

C. Неявная память

D. Декларативная память

E. Неассоциативная память

Классический кондиционер — это пример:

A. Семантическая память

B. Эпизодическая память. Этот ответ НЕПРАВИЛЬНЫЙ.

Эпизодическая память — это тип декларативной памяти, тогда как классическое кондиционирование — это тип недекларативной (неявной) памяти.

C. Неявная память

D. Декларативная память

E. Неассоциативная память

Классический кондиционер — это пример:

A. Семантическая память

Б. Эпизодическая память

C. Неявная память. Ответ ПРАВИЛЬНЫЙ!

Д.Декларативная память

E. Неассоциативная память

Классический кондиционер — это пример:

A. Семантическая память

Б. Эпизодическая память

C. Неявная память

D. Декларативная память. Ответ НЕПРАВИЛЬНЫЙ.

Классическое кондиционирование — пример недекларативной памяти.

E. Неассоциативная память

Классический кондиционер — это пример:

A. Семантическая память

Б. Эпизодическая память

C. Неявная память

D. Декларативная память

E.

Добавить комментарий